Robust Adaptive Algorithm for Smart Antenna System With $\alpha$ -Stable Noise

One of the main problems facing beamforming in smart antenna system is the <inline-formula> <tex-math notation="LaTeX">$ {\alpha }$ </tex-math></inline-formula>-stable noise. To address this problem, a novel algorithm, named the recursive continuous logarithmic mixed <inline-formula> <tex-math notation="LaTeX">${p}$ </tex-math></inline-formula>-norm (RCLMP) algorithm, which employs a logarithmic cost, is proposed in this brief. The proposed algorithm combines the logarithmic <inline-formula> <tex-math notation="LaTeX">${p}$ </tex-math></inline-formula>-norms <inline-formula> <tex-math notation="LaTeX">${1}{\leq } p \leq 2$ </tex-math></inline-formula> which does not need the parameter selection and prior knowledge of <inline-formula> <tex-math notation="LaTeX">${\alpha }$ </tex-math></inline-formula>-stable noise, and exhibits good robustness against <inline-formula> <tex-math notation="LaTeX">${\alpha }$ </tex-math></inline-formula>-stable noise. Moreover, we show some <inline-formula> <tex-math notation="LaTeX">${H}^{{\infty }}$ </tex-math></inline-formula> norm bounds for the proposed algorithm. Simulation results show that the RCLMP algorithm outperforms the existing algorithms in terms of interference rejection capability and estimation accuracy.

[1]  Zhihua Wang,et al.  A $\Delta \Sigma$ -TDC-Based Beamforming Method for Vital Sign Detection Radar Systems , 2014, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Rodrigo C. de Lamare,et al.  Low-Complexity Constrained Adaptive Reduced-Rank Beamforming Algorithms , 2013, IEEE Transactions on Aerospace and Electronic Systems.

[3]  José Antonio Apolinário,et al.  ${{\bf L}_1}$-Constrained Normalized LMS Algorithms for Adaptive Beamforming , 2015, IEEE Transactions on Signal Processing.

[4]  Jalal Abdulsayed Srar,et al.  Adaptive Array Beamforming Using a Combined LMS-LMS Algorithm , 2010, IEEE Transactions on Antennas and Propagation.

[5]  Hadi Zayyani,et al.  Continuous Mixed $p$-Norm Adaptive Algorithm for System Identification , 2014, IEEE Signal Processing Letters.

[6]  Kyu-Hwa Jeong,et al.  Robust Adaptive Minimum Entropy Beamformer in Impulsive Noise , 2007, 2007 IEEE Workshop on Machine Learning for Signal Processing.

[7]  Badong Chen,et al.  Improved-Variable-Forgetting-Factor Recursive Algorithm Based on the Logarithmic Cost for Volterra System Identification , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[8]  A. S. Madhukumar,et al.  Particle Filtering for Acoustic Source Tracking in Impulsive Noise With Alpha-Stable Process , 2013, IEEE Sensors Journal.

[9]  Lei Huang,et al.  $\ell _{p}$-MUSIC: Robust Direction-of-Arrival Estimator for Impulsive Noise Environments , 2013, IEEE Transactions on Signal Processing.

[10]  Ali H. Sayed,et al.  Fundamentals Of Adaptive Filtering , 2003 .

[11]  Lei Huang,et al.  Shrinkage Linear and Widely Linear Complex-Valued Least Mean Squares Algorithms for Adaptive Beamforming , 2015, IEEE Transactions on Signal Processing.

[12]  A.J. Paulraj,et al.  Space-time processing for wireless communications , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  Yi Li,et al.  Adaptive Beamforming for Vector-Sensor Arrays Based on a Reweighted Zero-Attracting Quaternion-Valued LMS Algorithm , 2016, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  Chrysostomos L. Nikias,et al.  Robust adaptive beamforming in alpha-stable noise environments , 1996, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings.

[15]  Danilo P. Mandic,et al.  Mean square analysis of the CLMS and ACLMS for non-circular signals: The approximate uncorrelating transform approach , 2015, 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).