A method for drawing graphs

We are developing programs that draw pictures of graphs in the plane. Since graphs are a very powerful way to capture information such programs have many applications. However, there is a fundamental problem with creating such programs: graphs are abstract objects, and do not include any information about how they are to be displayed. There are au infinite number of pictures that represent a given graph. How are we to decide which is best7

[1]  Donald E. Knuth,et al.  Computer-drawn flowcharts , 1963, CACM.

[2]  Edward M. Reingold,et al.  Tidier Drawings of Trees , 1981, IEEE Transactions on Software Engineering.

[3]  Wilhelm Magnus,et al.  Groups and Their Graphs: Contents , 1992 .

[4]  W. T. Tutte Convex Representations of Graphs , 1960 .

[5]  H. Wielandt,et al.  Finite Permutation Groups , 1964 .

[6]  R. Frucht,et al.  On the groups of repeated graphs , 1949 .

[7]  L. Weinberg On the Maximum Order of the Automorphism Group of a Planar Triply Connected Graph , 1966 .

[8]  Gert Sabidussi,et al.  Graph multiplication , 1959 .

[9]  P. Erdös ASYMMETRIC GRAPHS , 2022 .

[10]  Frank Harary,et al.  Graph Theory , 2016 .

[11]  W. Miller Symmetry groups and their applications , 1972 .

[12]  H. Coxeter Self-dual configurations and regular graphs , 1950 .

[13]  W. T. Tutte On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.

[14]  Johannes Siemons,et al.  Automorphism groups of graphs , 1983 .

[15]  Gert Sabidussi,et al.  On the minimum order of graphs with given automorphism group , 1959 .

[16]  Charles Wetherell,et al.  Tidy Drawings of Trees , 1979, IEEE Transactions on Software Engineering.

[17]  Michael Capobianco,et al.  Examples and Counterexamples in Graph Theory , 1978, J. Graph Theory.

[18]  C. Sims Computational methods in the study of permutation groups , 1970 .

[19]  Robert M. Haralick,et al.  Efficient Graph Automorphism by Vertex Partitioning , 1983, Artif. Intell..

[20]  M. Watkins,et al.  On the action of non-Abelian groups on graphs , 1971 .

[21]  W. T. Tutte Connectivity in graphs , 1966 .

[22]  Melvin Hausner,et al.  A Vector Space Approach to Geometry , 1967 .

[23]  N. Biggs Algebraic Graph Theory , 1974 .

[24]  Mark Jerrum A Compact Representation for Permutation Groups , 1982, FOCS.

[25]  Frank Harary,et al.  On the order of the group of a planar map , 1966 .

[26]  N. S. Barnett,et al.  Private communication , 1969 .

[27]  L. Lovász Combinatorial problems and exercises , 1979 .

[28]  H. Coxeter,et al.  Generators and relations for discrete groups , 1957 .

[29]  John E. Hopcroft,et al.  Polynomial-time algorithms for permutation groups , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[30]  Gert Sabidussi,et al.  Graphs with Given Group and Given Graph-Theoretical Properties , 1957, Canadian Journal of Mathematics.

[31]  E. H. Lockwood,et al.  A Vector Space Approach to Geometry , 1967 .

[32]  R. Frucht Graphs of Degree Three with a Given Abstract Group , 1949, Canadian Journal of Mathematics.

[33]  R. M. Foster,et al.  Geometrical circuits of electrical networks , 1932, Electrical Engineering.

[34]  W. T. Tutte Graph Theory , 1984 .

[35]  Roberto Frucht,et al.  HOW TO DESCRIBE A GRAPH , 1970 .

[36]  G. Pólya Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen , 1937 .

[37]  I. N. Kagno Desargues' and Pappus' Graphs and Their Groups , 1947 .

[38]  I. N. Kagno Linear Graphs of Degree ≤ 6 and their Groups , 1946 .

[39]  Leonard Merrick Uhr,et al.  Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information , 1984 .

[40]  Paul D. McDermott,et al.  What Is A Map , 1969 .

[41]  F. Harary New directions in the theory of graphs , 1973 .

[42]  G. Sabidussi The composition of graphs , 1959 .

[43]  John J. Cannon Computers in group theory: a survey , 1969, CACM.

[44]  Jack E. Graver,et al.  Combinatorics with emphasis on the theory of graphs , 1977 .