Chapter 11 – Cerebellum

Publisher Summary This chapter explains the external gross anatomy of cerebellum. It explains the pattern of cerebellar lobules and folial pattern in cerebellum. The gross external anatomy of the murine cerebellum is typical of most mammals. The cerebellum consists of a series of median vermal lobules and prominent lateral extensions called hemispheres. The cerebellum forms the roof of the fourth ventricle; the superior medullary velum of the cerebellum forms the rostral part of the roof, and the caudal half of the cerebellum overhangs the ependymal roof and choroid plexus of the caudal half of the fourth ventricle. The cerebellum is attached to the brain stem by the three pairs of cerebellar peduncles. The peduncles are large fiber bundles, which carry the cerebellar efferent and afferent tracts. Three major afferent systems carry inputs to the cerebellar cortex. The climbing fibers, which originate from the contralateral inferior olivary nucleus of the medulla oblongata, synapse within the proximal dendrites of Purkinje cells. The second major afferent system, the mossy fibers, originates from many sites including the spinal cord, the brain stem and the pons. A single mossy fiber may influence hundreds of Purkinje cells, while relatively few Purkinje cells are stimulated by input from a single climbing fiber. The third major afferent system consists of fibers that originate from various regions of the brain including the locus coeruleus and raphe nucleus. These thin fibers are morphologically distinct from the climbing and mossy fibers and terminate within all layers of the cerebellar cortex and also within the cerebellar nuclei.

[1]  K. Schilling,et al.  Nitric oxide synthase expression reveals compartments of cerebellar granule cells and suggests a role for mossy fibers in their development , 1994, Neuroscience.

[2]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[3]  E. Mugnaini,et al.  Unipolar brush cells develop a set of characteristic features in primary cerebellar cultures , 2000, Journal of neurocytology.

[4]  N. Barmack Central vestibular system: vestibular nuclei and posterior cerebellum , 2003, Brain Research Bulletin.

[5]  C. Sotelo,et al.  Organization of spinocerebellar projection map in three types of agranular cerebellum: Purkinje cells vs. granule cells as organizer element , 1988, The Journal of comparative neurology.

[6]  J. Hewitt,et al.  Genetic analysis of cerebellar foliation patterns in mice (Mus musculus) , 1991, Behavior genetics.

[7]  D. Armstrong,et al.  An investigation of the cerebellar corticonuclear projections in the rat using an autoradiographic tracing method. II. Projections from the hemisphere , 1978, Brain Research.

[8]  R. Hawkes,et al.  Development of parasagittal zonation in the rat cerebellar cortex: MabQ113 antigenic bands are created postnatally by the suppression of antigen expression in a subset of Purkinje cells , 1988, The Journal of comparative neurology.

[9]  Richard Hawkes,et al.  Chapter 3 An anatomical model of cerebellar modules , 1997 .

[10]  C. Englund,et al.  Unipolar Brush Cells of the Cerebellum Are Produced in the Rhombic Lip and Migrate through Developing White Matter , 2006, The Journal of Neuroscience.

[11]  S. Edwards The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. , 1972, Brain research.

[12]  Masahiko Watanabe,et al.  Ptf1a, a bHLH Transcriptional Gene, Defines GABAergic Neuronal Fates in Cerebellum , 2005, Neuron.

[13]  K. Herrup,et al.  Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. , 1999, Journal of neurobiology.

[14]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[15]  V. Perciavalle,et al.  Reticulocerebellar projections to the anterior and posterior lobes of the rat cerebellum , 2001, Neuroscience Letters.

[16]  H. Axelrad,et al.  Lugaro cells target basket and stellate cells in the cerebellar cortex , 1998, Neuroreport.

[17]  Richard Hawkes,et al.  Golgi Cell Dendrites Are Restricted by Purkinje Cell Stripe Boundaries in the Adult Mouse Cerebellar Cortex , 2008, The Journal of Neuroscience.

[18]  Y Shinoda,et al.  The entire trajectory of single climbing and mossy fibers in the cerebellar nuclei and cortex. , 2000, Progress in brain research.

[19]  R. Hawkes,et al.  Granule cell dispersion is restricted across transverse boundaries in mouse chimeras , 1999, The European journal of neuroscience.

[20]  R. Illing A subtype of cerebellar Golgi cells may be cholinergic , 1990, Brain Research.

[21]  C. Jahr,et al.  Glutamate transporter currents in bergmann glial cells follow the time course of extrasynaptic glutamate. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  C. Sotelo,et al.  Cerebellar development: afferent organization and Purkinje cell heterogeneity. , 1991, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[23]  S. Dymecki,et al.  Origin of the Precerebellar System , 2000, Neuron.

[24]  A. Joyner,et al.  Genetic subdivision of the tectum and cerebellum into functionally related regions based on differential sensitivity to engrailed proteins , 2007, Development.

[25]  R. Hawkes,et al.  Blebs in the Mouse Cerebellar Granular Layer as a Sign of Structural Inhomogeneity , 1998, Cells Tissues Organs.

[26]  S. Bao,et al.  Bilateral lesions of the interpositus nucleus completely prevent eyeblink conditioning in Purkinje cell-degeneration mutant mice. , 1999, Behavioral neuroscience.

[27]  B. Wiksten Further studies on the fiber connections of the central cervical nucleus in the cat , 2004, Experimental Brain Research.

[28]  J. Bower,et al.  3D electron microscopic reconstruction of segments of rat cerebellar purkinje cell dendrites receiving ascending and parallel fiber granule cell synaptic inputs , 2009, The Journal of comparative neurology.

[29]  J. Voogd,et al.  Organization of projections from the inferior olive to the cerebellar nuclei in the rat , 2000, The Journal of comparative neurology.

[30]  N. Lemkey-Johnston,et al.  The distribution of recurrent purkinje collateral synapses in the mouse cerebellar cortex: An electron microscopic study , 1970, The Journal of comparative neurology.

[31]  Richard Hawkes,et al.  The Reelin Receptors Apoer2 and Vldlr Coordinate the Patterning of Purkinje Cell Topography in the Developing Mouse Cerebellum , 2008, PloS one.

[32]  N. Mizuno,et al.  Metabotropic glutamate receptors mGluR2 and mGluR5 are expressed in two non-overlapping populations of Golgi cells in the rat cerebellum , 1996, Neuroscience.

[33]  R. Baughman,et al.  Projections to the pontine nuclei from choline acetyltransferase‐like immunoreactive neurons in the brainstem of the cat , 1990, The Journal of comparative neurology.

[34]  E. Dietrichs,et al.  Olivary afferents from the raphe nuclei as studied with retrograde transport of horseradish peroxidase , 2004, Anatomy and Embryology.

[35]  M. L. Pinto,et al.  Projections From the Anterior Interposed Nucleus to the Red Nucleus Diminish With Age in the Mouse , 2008, Anatomia, histologia, embryologia.

[36]  A. Guidotti,et al.  Moving up or moving down? Malpositioned cerebellar unipolar brush cells in reeler mouse , 2005, Neuroscience.

[37]  D. Jacobowitz,et al.  The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry , 1994, Anatomy and Embryology.

[38]  N. Leclerc,et al.  Immunocytochemical demonstration of topographic ordering of purkinje cell axon terminals in the fastigial nuclei of the rat , 1986, The Journal of comparative neurology.

[39]  J. Goldman,et al.  Developmental fates and migratory pathways of dividing progenitors in the postnatal rat cerebellum , 1996, The Journal of comparative neurology.

[40]  D. Jacobowitz,et al.  Development of calretinin-immunoreactive unipolar brush-like cells and an afferent pathway to the embryonic and early postnatal mouse cerebellum , 1995, Anatomy and Embryology.

[41]  M. Hatten,et al.  Molecular Markers of Neuronal Progenitors in the Embryonic Cerebellar Anlage , 2006, The Journal of Neuroscience.

[42]  R. Hawkes,et al.  Parasagittal organization of the rat cerebellar cortex: Direct comparison of purkinje cell compartments and the organization of the spinocerebellar projection , 1990, The Journal of comparative neurology.

[43]  I. Sugihara,et al.  Projection of reconstructed single purkinje cell axons in relation to the cortical and nuclear aldolase C compartments of the rat cerebellum , 2009, The Journal of comparative neurology.

[44]  Benjamin R. Arenkiel,et al.  In Vivo Light-Induced Activation of Neural Circuitry in Transgenic Mice Expressing Channelrhodopsin-2 , 2007, Neuron.

[45]  R. Poppele,et al.  Origin of spinal projections to the anterior and posterior lobes of the rat cerebellum , 1991, The Journal of comparative neurology.

[46]  Richard Hawkes,et al.  Monoclonal antibodies reveal sagittal banding in the rodent cerebellar cortex , 1985, Brain Research.

[47]  A. Joyner,et al.  Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. , 2007, Annual review of cell and developmental biology.

[48]  R. Hawkes,et al.  Antigenic compartmentation in the mouse cerebellar cortex: Zebrin and HNK‐1 reveal a complex, overlapping molecular topography , 1993, The Journal of comparative neurology.

[49]  A. Joyner,et al.  Spatial pattern of sonic hedgehog signaling through Gli genes during cerebellum development , 2004, Development.

[50]  H. Noda,et al.  Cerebellar corticonuclear and nucleocortical projections in the vermis of posterior lobe of the rat as studied with anterograde and retrograde transport of WGA-HRP , 1990, Neuroscience Research.

[51]  R. Sidman,et al.  Parasagittal organization of the olivocerebellar projection in the mouse , 1982, The Journal of comparative neurology.

[52]  O. Larsell,et al.  The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat , 1952, The Journal of comparative neurology.

[53]  Richard Hawkes,et al.  Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. , 2005, Progress in brain research.

[54]  A. Joyner,et al.  Engrailed Homeobox Genes Determine the Organization of Purkinje Cell Sagittal Stripe Gene Expression in the Adult Cerebellum , 2008, The Journal of Neuroscience.

[55]  K. Herrup,et al.  The compartmentalization of the cerebellum. , 1997, Annual review of neuroscience.

[56]  Richard Hawkes,et al.  A key role for the HLH transcription factor EBF2COE2,O/E-3 in Purkinje neuron migration and cerebellar cortical topography , 2006, Development.

[57]  N. Slater,et al.  Unipolar brush cells form a glutamatergic projection system within the mouse cerebellar cortex , 2001, The Journal of comparative neurology.

[58]  C. Cepko,et al.  Biphasic dispersion of clones containing Purkinje cells and glia in the developing chick cerebellum. , 1999, Developmental biology.

[59]  J. Voogd,et al.  Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: A light microscopic and ultrastructural triple‐tracer study in the rat , 1998, The Journal of comparative neurology.

[60]  J. Courville,et al.  Descending projections to the inferior olive from the mesencephalon and superior colliculus in the cat , 1982, Experimental Brain Research.

[61]  H. Okano,et al.  A Genetic Approach to Visualization of Multisynaptic Neural Pathways Using Plant Lectin Transgene , 1999, Neuron.

[62]  R. Hawkes,et al.  Compartmentation of the cerebellar nuclei of the mouse , 2009, Neuroscience.

[63]  J. Bower,et al.  Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIa of the rat , 1999, Neuroscience.

[64]  Beatriz Rico,et al.  Transneuronal tracing of diverse CNS circuits by Cre-mediated induction of wheat germ agglutinin in transgenic mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[65]  Masahiko Watanabe,et al.  Complementary stripes of phospholipase Cβ3 and Cβ4 expression by Purkinje cell subsets in the mouse cerebellum , 2006 .

[66]  C. N. Liu Afferent nerves to Clarke's and the lateral cuneate nuclei in the cat. , 1956, A.M.A. archives of neurology and psychiatry.

[67]  Marc Tessier-Lavigne,et al.  Extension of Long Leading Processes and Neuronal Migration in the Mammalian Brain Directed by the Chemoattractant Netrin-1 , 1999, Neuron.

[68]  M. Inouye,et al.  Strain‐specific variations in the folial pattern of the mouse cerebellum , 1980, The Journal of comparative neurology.

[69]  H. Taniguchi,et al.  Direct visualization of nucleogenesis by precerebellar neurons: involvement of ventricle-directed, radial fibre-associated migration , 2006, Development.

[70]  G. Mihailoff,et al.  The cytoarchitecture, cytology, and synaptic organization of the basilar pontine nuclei in the rat. I. Nissl and golgi studies , 1981, The Journal of comparative neurology.

[71]  S. Hockfield,et al.  Molecular identification of the lugaro cell in the cat cerebellar cortex , 1990, The Journal of comparative neurology.

[72]  Anamaria Sudarov,et al.  The Engrailed homeobox genes determine the different foliation patterns in the vermis and hemispheres of the mammalian cerebellum , 2010, Development.

[73]  H. Axelrad,et al.  Morphology of the Golgi‐impregnated lugaro cell in the rat cerebellar cortex: A reappraisal with a description of its axon , 1996, The Journal of comparative neurology.

[74]  N. Barmack,et al.  Functions of Interneurons in Mouse Cerebellum , 2008, The Journal of Neuroscience.

[75]  M. Edwards,et al.  Organization of radial glia and related cells in the developing murine CNS. An analysis based upon a new monoclonal antibody marker , 1990, Neuroscience.

[76]  Richard L. Sidman,et al.  Identification and mapping of a mouse gene influencing cerebellar folial pattern , 1990, Brain Research.

[77]  Bernd Fritzsch,et al.  Partial segregation of posterior crista and saccular fibers to the nodulus and uvula of the cerebellum in mice, and its development. , 2003, Brain research. Developmental brain research.

[78]  L. Eisenman Antero-posterior boundaries and compartments in the cerebellum: evidence from selected neurological mutants. , 2000, Progress in brain research.

[79]  F. Walberg The lateral reticular nucleus of the medulla oblongata in mammals. A comparative–anatomical study , 1952, The Journal of comparative neurology.

[80]  A. J. Bower,et al.  An ipsilateral olivocerebellar connection: an autoradiographic study in the unilaterally pedunculotomised neonatal rat , 2004, Experimental Brain Research.

[81]  C. Englund,et al.  Development of the Deep Cerebellar Nuclei: Transcription Factors and Cell Migration from the Rhombic Lip , 2006, The Journal of Neuroscience.

[82]  Stefan A. Przyborski,et al.  The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein , 1997, Nature.

[83]  L. Eisenman,et al.  Olivocerebellar fiber maturation in normal and lurcher mutant mice: Defective development in lurcher , 1990, The Journal of comparative neurology.

[84]  O. Oscarsson Functional Organization of Spinocerebellar Paths , 1973 .

[85]  I. Sugihara Organization and remodeling of the olivocerebellar climbing fiber projection , 2008, The Cerebellum.

[86]  J. G. Briñón,et al.  Parvalbumin immunoreactive neurons and fibres in the teleost cerebellum , 2004, Anatomy and Embryology.

[87]  J. Simpson,et al.  Microcircuitry and function of the inferior olive , 1998, Trends in Neurosciences.

[88]  J. C. Kim,et al.  Molecular Neuroanatomy's “Three Gs”: A Primer , 2007, Neuron.

[89]  M. Frotscher,et al.  Neurogranin expression by cerebellar neurons in rodents and non‐human primates , 2003, The Journal of comparative neurology.

[90]  R. Parenti,et al.  The basilar pontine nuclei and the nucleus reticularis tegmenti pontis subserve distinct cerebrocerebellar pathways. , 2005, Progress in brain research.

[91]  M. Garwicz,et al.  Anatomical and physiological foundations of cerebellar information processing , 2005, Nature Reviews Neuroscience.

[92]  H. Künzle,et al.  Zebrin II compartmentation of the cerebellum in a basal insectivore, the Madagascan hedgehog tenrec Echinops telfairi , 2003, Journal of anatomy.

[93]  G. Paxinos,et al.  The precerebellar linear nucleus in the mouse defined by connections, immunohistochemistry, and gene expression , 2009, Brain Research.

[94]  J. D. Cooke,et al.  Origin and termination of cuneocerebellar tract , 1971, Experimental Brain Research.

[95]  P. Somogyi,et al.  Climbing Fiber Innervation of NG2-Expressing Glia in the Mammalian Cerebellum , 2005, Neuron.

[96]  Anamaria Sudarov,et al.  Cerebellum morphogenesis: the foliation pattern is orchestrated by multi-cellular anchoring centers , 2007, Neural Development.

[97]  Wolfgang Wurst,et al.  Neural plate patterning: Upstream and downstream of the isthmic organizer , 2001, Nature Reviews Neuroscience.

[98]  R. Segal,et al.  Regional expression of p75NTR contributes to neurotrophin regulation of cerebellar patterning , 2003, Molecular and Cellular Neuroscience.

[99]  A. Joyner,et al.  The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation , 2006, Development.

[100]  Allan R. Jones,et al.  An anatomic gene expression atlas of the adult mouse brain , 2009, Nature Neuroscience.

[101]  L. Eisenman,et al.  External cuneocerebellar projection and Purkinje cell zebrin II bands: A direct comparison of parasagittal banding in the mouse cerebellum , 1994, Journal of Chemical Neuroanatomy.

[102]  J. Voogd,et al.  Transverse and longitudinal patterns in the mammalian cerebellum. , 1997, Progress in brain research.

[103]  Tomas C. Bellamy,et al.  Interactions between Purkinje neurones and Bergmann glia , 2008, The Cerebellum.

[104]  R. Hawkes,et al.  Selective Purkinje cell ectopia in the cerebellum of the Weaver mouse , 2001, The Journal of comparative neurology.

[105]  G. Mower,et al.  Control of Precerebellar Neuron Development by Olig3 bHLH Transcription Factor , 2008, The Journal of Neuroscience.

[106]  Alain Chédotal,et al.  Development of the olivocerebellar system: migration and formation of cerebellar maps. , 2005, Progress in brain research.

[107]  A. Joyner,et al.  The Engrailed-2 homeobox gene and patterning of spinocerebellar mossy fiber afferents. , 1996, Brain research. Developmental brain research.

[108]  J M Bower,et al.  Ascending granule cell axon: An important component of cerebellar cortical circuitry , 1999, The Journal of comparative neurology.

[109]  G. Paxinos,et al.  Precerebellar Cell Groups in the Hindbrain of the Mouse Defined by Retrograde Tracing and Correlated with Cumulative Wnt1-Cre Genetic Labeling , 2011, The Cerebellum.

[110]  E. Mugnaini,et al.  The GABAergic cerebello-olivary projection in the rat , 2005, Anatomy and Embryology.

[111]  J. Voogd,et al.  Chapter 1 The cerebellum: chemoarchitecture and anatomy , 1996 .

[112]  A. Rotter,et al.  Novel receptor protein tyrosine phosphatase (RPTPρ) and acidic fibroblast growth factor (FGF‐1) transcripts delineate a rostrocaudal boundary in the granule cell layer of the murine cerebellar cortex , 1998, The Journal of comparative neurology.

[113]  Stacey L. Reeber,et al.  Patterned expression of a cocaine‐ and amphetamine‐regulated transcript peptide reveals complex circuit topography in the rodent cerebellar cortex , 2011, The Journal of comparative neurology.

[114]  Richard Hawkes,et al.  Constitutive expression of the 25‐kDa heat shock protein Hsp25 reveals novel parasagittal bands of Purkinje cells in the adult mouse cerebellar cortex , 2000, The Journal of comparative neurology.

[115]  R. Hawkes,et al.  Transverse zones in the vermis of the mouse cerebellum , 1999, The Journal of comparative neurology.

[116]  D Jaarsma,et al.  The unipolar brush cells of the mammalian cerebellum and cochlear nucleus: cytology and microcircuitry. , 1997, Progress in brain research.

[117]  C. Sotelo,et al.  Cellular and genetic regulation of the development of the cerebellar system , 2004, Progress in Neurobiology.

[118]  Eckart D Gundelfinger,et al.  Expression of the immunoglobulin superfamily neuroplastin adhesion molecules in adult and developing mouse cerebellum and their localisation to parasagittal stripes , 2003, The Journal of comparative neurology.

[119]  S. Onodera Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated amino acids , 1984, The Journal of comparative neurology.

[120]  Mami Terao,et al.  Origin of Climbing Fiber Neurons and Their Developmental Dependence on Ptf1a , 2007, The Journal of Neuroscience.

[121]  Masahiko Watanabe,et al.  Phospholipase cβ4 expression reveals the continuity of cerebellar topography through development , 2007, The Journal of comparative neurology.

[122]  R Hawkes,et al.  Blebs in the mouse cerebellar granular layer as a sign of structural inhomogeneity. 1. Anterior lobe vermis. , 1997, Acta anatomica.

[123]  C. Sotelo,et al.  Molecular Mechanisms Controlling Midline Crossing by Precerebellar Neurons , 2008, The Journal of Neuroscience.

[124]  I. Sugihara,et al.  Close correlation between the birthdate of Purkinje cells and the longitudinal compartmentalization of the mouse adult cerebellum , 2011, Neuroscience Research.

[125]  L. Puelles,et al.  Morphological Fate of Rhombomeres in Quail/Chick Chimeras: A Segmental Analysis of Hindbrain Nuclei , 1995, The European journal of neuroscience.

[126]  J. Strahlendorf,et al.  Serotonergic interactions with rat cerebellar Purkinje cells , 1983, Brain Research Bulletin.

[127]  L. Puelles,et al.  Postulated boundaries and differential fate in the developing rostral hindbrain , 2005, Brain Research Reviews.

[128]  R. Hawkes,et al.  Compartmentation of gaba b receptor2 expression in the mouse cerebellar cortex , 2008, The Cerebellum.

[129]  Lei Zhang,et al.  Generation of Cerebellar Interneurons from Dividing Progenitors in White Matter , 1996, Neuron.

[130]  G. Grant,et al.  Topographic relationship between sagittal Purkinje cell bands revealed by a monoclonal antibody to zebrin I and spinocerebellar projections arising from the central cervical nucleus in the rat , 2004, Experimental Brain Research.

[131]  M. Vogel,et al.  Topographic spinocerebellar mossy fiber projections are maintained in the Lurcher mutant , 1994, The Journal of comparative neurology.

[132]  E. Mugnaini,et al.  Time of origin of unipolar brush cells in the rat cerebellum as observed by prenatal bromodeoxyuridine labeling , 2004, Neuroscience.

[133]  K. Berkley,et al.  Projections to the inferior olive of the cat I. Comparisons of input from the dorsal column nuclei, the lateral cervical nucleus, the spino‐olivary pathways, the cerebral cortex and the cerebellum , 1978, The Journal of comparative neurology.

[134]  J. Armengol,et al.  Morphological evidence for the presence of ipsilateral inferior olivary neurons during postnatal development of the olivocerebellar projection in the rat , 1994, The Journal of comparative neurology.

[135]  R. Hawkes,et al.  Novel developmental boundary in the cerebellum revealed by zebrin expression in the Lurcher (Lc/+) mutant mouse , 1992, The Journal of comparative neurology.

[136]  E. Mugnaini,et al.  Unipolar brush cell axons form a large system of intrinsic mossy fibers in the postnatal vestibulocerebellum , 2000, The Journal of comparative neurology.

[137]  Karl Schilling,et al.  From zebra stripes to postal zones: deciphering patterns of gene expression in the cerebellum , 1998, Trends in Neurosciences.

[138]  C. Sotelo,et al.  Development of the spinocerebellar system in the postnatal rat , 1985, The Journal of comparative neurology.

[139]  R. Lin,et al.  Cerebellar nitric oxide synthase is expressed within granule cell patches innervated by specific mossy fiber terminals: a developmental profile. , 1997, Developmental neuroscience.

[140]  A. Joyner,et al.  Classical embryological studies and modern genetic analysis of midbrain and cerebellum development. , 2005, Current topics in developmental biology.

[141]  R. Hawkes,et al.  Pattern formation in the cerebellar cortex. , 2000, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[142]  H. Zoghbi,et al.  Math1 Expression Redefines the Rhombic Lip Derivatives and Reveals Novel Lineages within the Brainstem and Cerebellum , 2005, Neuron.

[143]  Masahiko Watanabe,et al.  Phospholipase Cβ4 Expression Identifies a Novel Subset of Unipolar Brush Cells in the Adult Mouse Cerebellum , 2009, The Cerebellum.

[144]  Gord Fishell,et al.  Math1 Is Expressed in Temporally Discrete Pools of Cerebellar Rhombic-Lip Neural Progenitors , 2005, Neuron.

[145]  M. Tessier-Lavigne,et al.  Differential roles of Netrin-1 and its receptor DCC in inferior olivary neuron migration , 2009, Molecular and Cellular Neuroscience.

[146]  R. Sidman,et al.  An autoradiographic analysis of histogenesis in the mouse cerebellum. , 1961, Experimental neurology.

[147]  E. Mugnaini,et al.  Unusual neurofilament composition in cerebellar unipolar brush neurons , 1993, Journal of neurocytology.

[148]  Izumi Sugihara,et al.  Identification of aldolase C compartments in the mouse cerebellar cortex by olivocerebellar labeling , 2007, The Journal of comparative neurology.

[149]  R. Hawkes,et al.  Whole-mount Immunohistochemistry: A High-throughput Screen for Patterning Defects in the Mouse Cerebellum , 2002, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[150]  C. Zheng,et al.  CNS Gene Encoding Astrotactin, Which Supports Neuronal Migration Along Glial Fibers , 1996, Science.

[151]  T. G. Scott,et al.  A Unique Pattern of Localization within the Cerebellum , 1963, Nature.

[152]  S. Fujita QUANTITATIVE ANALYSIS OF CELL PROLIFERATION AND DIFFERENTIATION IN THE CORTEX OF THE POSTNATAL MOUSE CEREBELLUM , 1967, The Journal of cell biology.

[153]  E. T. Pierce Histogenesis of the deep cerebellar nuclei in the mouse: an autoradiographic study , 1975, Brain Research.

[154]  R. Parenti,et al.  The Projections of the Lateral Reticular Nucleus to the Deep Cerebellar Nuclei. An Experimental Analysis in the Rat , 1996, The European journal of neuroscience.

[155]  A. Joyner,et al.  Genetic inducible fate mapping in mouse: Establishing genetic lineages and defining genetic neuroanatomy in the nervous system , 2006, Developmental dynamics : an official publication of the American Association of Anatomists.

[156]  J. Olschowka,et al.  Postnatal development of cholinergic neurotransmitter enzymes in the mouse cerebellum. Biochemical, light microscopic and electron microscopic cytochemical investigations , 1980, The Journal of comparative neurology.

[157]  J. Bernard Topographical organization of olivocerebellar and corticonuclear connections in the rat—An WGA‐HRP study: I. Lobules IX, X, and the flocculus , 1987, The Journal of comparative neurology.

[158]  R. Awatramani,et al.  Hindbrain Rhombic Lip Is Comprised of Discrete Progenitor Cell Populations Allocated by Pax6 , 2005, Neuron.

[159]  E. Mugnaini,et al.  Distribution of unipolar brush cells and other calretinin immunoreactive components in the mammalian cerebellar cortex , 1999, Journal of neurocytology.

[160]  B. Clark,et al.  Currents evoked in Bergmann glial cells by parallel fibre stimulation in rat cerebellar slices , 1997, The Journal of physiology.

[161]  Karl Schilling,et al.  Control of segment-like patterns of gene expression in the mouse cerebellum , 1993, Neuron.

[162]  Enrico Mugnaini,et al.  Intrinsic properties and mechanisms of spontaneous firing in mouse cerebellar unipolar brush cells , 2007, The Journal of physiology.

[163]  R. Hawkes,et al.  Zebrin II: A polypeptide antigen expressed selectively by purkinje cells reveals compartments in rat and fish cerebellum , 1990, The Journal of comparative neurology.

[164]  J. Altman,et al.  Time of origin and distribution of a new cell type in the rat cerebellar cortex , 1977, Experimental Brain Research.

[165]  Masanobu Kano,et al.  Postnatal development and synapse elimination of climbing fiber to Purkinje cell projection in the cerebellum , 2005, Neuroscience Research.

[166]  R. Swenson,et al.  The afferent connections of the inferior olivary complex in rats: a study using the retrograde transport of horseradish peroxidase. , 1983, The American journal of anatomy.

[167]  R. Hawkes,et al.  Pattern formation in the cerebellum of murine embryonic stem cell chimeras , 1998, The European journal of neuroscience.

[168]  R. Parenti,et al.  Multiple zonal projections of the basilar pontine nuclei to the cerebellar cortex of the rat , 2001, The Journal of comparative neurology.

[169]  T. Houtani,et al.  Vesicular acetylcholine transporter–immunoreactive axon terminals enriched in the pontine nuclei of the mouse , 2007, Neuroscience.

[170]  D. Wahlsten,et al.  Patterns of cerebellar foliation in recombinant inbred mice , 1991, Brain Research.

[171]  J. Petras,et al.  The origin of spinocerebellar pathways. I. The nucleus cervicalis centralis of the cranial cervical spinal cord , 1977, The Journal of comparative neurology.

[172]  F. Rijli,et al.  Hox genes in neural patterning and circuit formation in the mouse hindbrain. , 2009, Current topics in developmental biology.

[173]  R. Hawkes,et al.  Differential Distribution of MAP1a and Aldolase c in Adult Mouse Cerebellum , 1996, The European journal of neuroscience.

[174]  Z. Ji,et al.  Evidence of spinocerebellar mossy fiber segregation in the juvenile staggerer cerebellum , 1997, The Journal of comparative neurology.

[175]  Shinichi Ohno,et al.  Compartmentation of the mouse cerebellar cortex by sphingosine kinase , 2004, The Journal of comparative neurology.

[176]  M. Shimada,et al.  H3‐Thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granular layers of the mouse cerebellum , 1966, The Journal of comparative neurology.

[177]  G. Macchi,et al.  Distribution of dorsal root fibers in the medulla oblongata of the cat , 1968, The Journal of comparative neurology.

[178]  R. Hawkes,et al.  Abnormal dispersion of a purkinje cell subset in the mouse mutant cerebellar deficient folia (cdf) , 2001, The Journal of comparative neurology.

[179]  The trigemino‐olivary projection in the cat: Contributions of individual subnuclei , 1985, The Journal of comparative neurology.

[180]  R. Hawkes,et al.  Purkinje cell phenotype restricts the distribution of unipolar brush cells , 2009, Neuroscience.

[181]  T. Curran,et al.  Role of the reelin signaling pathway in central nervous system development. , 2001, Annual review of neuroscience.

[182]  T. Yamadori,et al.  Corticonuclear and corticovestibular projections from the uvula in the albino rat: differential projections from sublobuli of the uvula , 1989, Brain Research.

[183]  R. Switzer,et al.  Trigeminal projections to cerebellar tactile areas in the rat-origin mainly from n. interpolaris and n. principalis , 1978, Neuroscience Letters.

[184]  C. Sotelo,et al.  Ultrastructural analysis of catecholaminergic innervation in weaver and normal mouse cerebellar cortices , 2000, The Journal of comparative neurology.

[185]  A. Basbaum,et al.  Projections of cervicothoracic dorsal roots to the cuneate nucleus of the rat, with observations on cellular “bricks” , 1973, The Journal of comparative neurology.

[186]  Jan Voogd,et al.  Chapter 5 Cholinergic innervation and receptors in the cerebellum , 1997 .

[187]  James M Bower,et al.  Correlations between purkinje cell single-unit activity and simultaneously recorded field potentials in the immediately underlying granule cell layer. , 2005, Journal of neurophysiology.

[188]  J. Voogd,et al.  Topography of cerebellar nuclear projections to the brain stem in the rat. , 2000, Progress in brain research.

[189]  Kazuhiko Sawada,et al.  Spatial distribution of corticotropin-releasing factor immunopositive climbing fibers in the mouse cerebellum: Analysis by whole mount immunohistochemistry , 2008, Brain Research.

[190]  L. Roncali,et al.  Glutamic acid decarboxylase immunoreactive large neuron types in the granular layer of the human cerebellar cortex , 2004, Anatomy and Embryology.

[191]  Masahiko Watanabe,et al.  Changes in expression and distribution of the glutamate transporter EAAT4 in developing mouse Purkinje cells , 1997, Neuroscience Research.

[192]  L. Garey,et al.  Parasagittal patches in the granular layer of the developing and adult rat cerebellum as demonstrated by NADPH-diaphorase histochemistry. , 1993, Neuroreport.

[193]  J. Altman,et al.  Development of the precerebellar nuclei in the rat: II. The intramural olivary migratory stream and the neurogenetic organization of the inferior olive , 1987, The Journal of comparative neurology.

[194]  G. K. Røste Observations on the projection from the perihypoglossal nuclei to the cerebellar cortex and nuclei in the cat , 2004, Anatomy and Embryology.

[195]  R. Shigemoto,et al.  Differential expression of calretinin and metabotropic glutamate receptor mGluR1α defines subsets of unipolar brush cells in mouse cerebellum , 2002, The Journal of comparative neurology.

[196]  J. Fritschy,et al.  Heterogeneity of glycinergic and gabaergic interneurons in the granule cell layer of mouse cerebellum , 2007, The Journal of comparative neurology.

[197]  K. Hoffmann,et al.  Olivary afferents from the pretectal nuclei in the cat , 2004, Anatomy and Embryology.

[198]  R. Hawkes,et al.  Topography of purkinje cell compartments and mossy fiber terminal fields in lobules ii and iii of the rat cerebellar cortex: Spinocerebellar and cuneocerebellar projections , 1994, Neuroscience.

[199]  Richard Hawkes,et al.  From clusters to stripes: The developmental origins of adult cerebellar compartmentation , 2008, The Cerebellum.

[200]  B. Ghetti,et al.  Anterograde transsynaptic degeneration in the deep cerebellar nuclei of Purkinje cell degeneration (pcd) mutant mice , 2004, Experimental Brain Research.

[201]  R. Awatramani,et al.  Assembly of the Brainstem Cochlear Nuclear Complex Is Revealed by Intersectional and Subtractive Genetic Fate Maps , 2006, Neuron.

[202]  G. Xiong,et al.  Projections from the cervical enlargement to the cerebellar nuclei in the rat, studied by anterograde axonal tracing , 1997, The Journal of comparative neurology.

[203]  A. Joyner,et al.  Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. , 2000, Current opinion in cell biology.

[204]  R. Hawkes,et al.  Compartmentation of NADPH‐diaphorase activity in the mouse cerebellar cortex , 1994, The Journal of comparative neurology.

[205]  C. Batini,et al.  Cerebellar nuclei and the nucleocortical projections in the rat: Retrograde tracing coupled to GABA and glutamate immunohistochemistry , 1992, The Journal of comparative neurology.

[206]  C. Fox,et al.  The intermediate cells of Lugaro in the cerebellar cortex of the monkey , 1959, The Journal of comparative neurology.

[207]  Richard Hawkes,et al.  The anatomy of the cerebellar nuclei in the normal and scrambler mouse as revealed by the expression of the microtubule-associated protein kinesin light chain 3 , 2007, Brain Research.

[208]  A. Hendrickson,et al.  Co-localization of glycine and gaba immunoreactivity in interneurons in Macaca monkey cerebellar cortex , 2006, Neuroscience.

[209]  R. Hawkes,et al.  Compartmentation in mammalian cerebellum: Zebrin II and P-path antibodies define three classes of sagittally organized bands of Purkinje cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[210]  H. Axelrad,et al.  The candelabrum cell: A new interneuron in the cerebellar cortex , 1994, The Journal of comparative neurology.

[211]  Dan Goldowitz,et al.  The cells and molecules that make a cerebellum , 1998, Trends in Neurosciences.

[212]  C. Sotelo,et al.  The Slit Receptor Rig-1/Robo3 Controls Midline Crossing by Hindbrain Precerebellar Neurons and Axons , 2004, Neuron.

[213]  Enrico Mugnaini,et al.  The unipolar brush cell: A remarkable neuron finally receiving deserved attention , 2011, Brain Research Reviews.

[214]  Richard Apps,et al.  Cerebellar cortical organization: a one-map hypothesis , 2009, Nature Reviews Neuroscience.

[215]  M. Hatten,et al.  Riding the glial monorail: A common mechanism for glialguided neuronal migration in different regions of the developing mammalian brain , 1990, Trends in Neurosciences.

[216]  Paul E. Neumann,et al.  Genetic analysis of cerebellar folial pattern in crosses of C57BL/6J and DBA/2J inbred mice , 1993, Brain Research.

[217]  A. Joyner,et al.  Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections , 2009, Neuroscience.

[218]  C. Sotelo,et al.  Transient biochemical compartmentalization of Purkinje cells during early cerebellar development. , 1985, Developmental biology.

[219]  Richard Hawkes,et al.  Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development , 2006, The Journal of comparative neurology.

[220]  Thomas Knöpfel,et al.  Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. , 2007, Journal of neurophysiology.

[221]  N. Leclerc,et al.  Antigenic map of the rat cerebellar cortex: The distribution of parasagittal bands as revealed by monoclonal anti‐purkinje cell antibody mabQ113 , 1987, The Journal of comparative neurology.

[222]  J. Cooke,et al.  Organization of afferent connections to cuneocerebellar tract , 1971, Experimental Brain Research.

[223]  Péter Kása,et al.  Development of neurons containing acetylcholinesterase and cholinacetyltransferase in dispersed cell culture of rat cerebellum , 1979, Histochemistry.

[224]  R. Hawkes,et al.  Parasagittal organization of the rat cerebellar cortex: Direct correlation between antigenic purkinje cell bands revealed by mabQ113 and the organization of the olivocerebellar projection , 1987, The Journal of comparative neurology.

[225]  J. Roder,et al.  Compartmentation of the mouse cerebellar cortex by neuronal calcium sensor‐1 , 2003, The Journal of comparative neurology.

[226]  A. J. Bower,et al.  Developmental modifications of olivocerebellar topography: The granuloprival cerebellum reveals multiple routes from the inferior olive , 2005, The Journal of comparative neurology.

[227]  Masao Ito Control of mental activities by internal models in the cerebellum , 2008, Nature Reviews Neuroscience.

[228]  U. Grüsser-Cornehls,et al.  Differential number of glycine‐ and GABA‐immunopositive neurons and terminals in the deep cerebellar nuclei of normal and Purkinje cell degeneration mutant mice , 1997, The Journal of comparative neurology.

[229]  Masao Ito Cerebellar circuitry as a neuronal machine , 2006, Progress in Neurobiology.

[230]  T. Marunouchi,et al.  Abnormality in the cerebellar folial pattern of C57BL/6J mice , 2005, Neuroscience Letters.

[231]  G. Bishop,et al.  Distribution of tyrosine hydroxylase‐immunoreactive afferents to the cerebellum differs between species , 1997, The Journal of comparative neurology.

[232]  R. Hawkes,et al.  The modular cerebellum , 1991, Progress in Neurobiology.

[233]  S. Moghadam,et al.  Glycinergic Projection Neurons of the Cerebellum , 2009, The Journal of Neuroscience.

[234]  Tetsuro Yamamoto,et al.  Organization of afferent connections to the lateral and interpositus cerebellar nuclei from the brainstem relay nuclei: a horseradish peroxidase study in the cat , 1985, Neuroscience Research.

[235]  E. Mugnaini,et al.  Dynamic metabotropic control of intrinsic firing in cerebellar unipolar brush cells. , 2008, Journal of neurophysiology.

[236]  C. Redies,et al.  Cadherins guide migrating Purkinje cells to specific parasagittal domains during cerebellar development , 2004, Molecular and Cellular Neuroscience.

[237]  R. Hawkes,et al.  The cyclin-dependent kinase 5 activator, p39, is expressed in stripes in the mouse cerebellum , 2003, Neuroscience.

[238]  E. Dietrichs Cerebellar autonomic function: direct hypothalamocerebellar pathway. , 1984, Science.

[239]  M. Masu,et al.  Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene , 2007, Neuroscience Research.

[240]  H. Braak,et al.  The new monodendritic neuronal type within the adult human cerebellar granule cell layer shows calretinin-immunoreactivity , 1993, Neuroscience Letters.

[241]  E. Mugnaini,et al.  The unipolar brush cell: A neglected neuron of the mammalian cerebellar cortex , 1994, The Journal of comparative neurology.

[242]  Massimo Pasqualetti,et al.  Hox Paralog Group 2 Genes Control the Migration of Mouse Pontine Neurons through Slit-Robo Signaling , 2008, PLoS Biology.

[243]  A. J. Bower,et al.  An ipsilateral olivocerebellar pathway in the normal neonatal rat demonstrated by the retrograde transport of True blue , 1987, Neuroscience Letters.

[244]  W. Precht,et al.  Anatomical studies on the nucleus reticularis tegmenti pontis in the pigmented rat. I. Cytoarchitecture, topography, and cerebral cortical afferents , 1986, The Journal of comparative neurology.

[245]  A. Joyner,et al.  Cell Behaviors and Genetic Lineages of the Mesencephalon and Rhombomere 1 , 2004, Neuron.

[246]  R. Wingate,et al.  The rhombic lip and early cerebellar development , 2001, Current Opinion in Neurobiology.

[247]  G. Bishop,et al.  Topographical organization in the origin of serotoninergic projections to different regions of the cat cerebellar cortex , 1991, The Journal of comparative neurology.

[248]  M. Glickstein,et al.  The anatomy of the cerebellum , 1998, Trends in Neurosciences.

[249]  W. Falls,et al.  The dorsomedial portion of trigeminal nucleus oralis (Vo) in the rat: cytology and projections to the cerebellum. , 1985, Somatosensory research.