Surface modification effects of graphite for selective hydrogen absorption by titanium at room temperature.

Surface modification effects of graphite and organic solvents on Ti were investigated by thermogravimetry (TG), Raman spectroscopy, and transmission electron microscopy (TEM) observations to improve its hydrogen absorption properties. As a result, Ti ball-milled with graphite showed high reactivity and selectivity for hydrogen with high durability.

[1]  Yongjun Tian,et al.  Mechanical polishing of ultrahard nanotwinned diamond via transition into hard sp2-sp3 amorphous carbon , 2020 .

[2]  K. Shinzato,et al.  Room-Temperature Hydrogen Absorption of Titanium with Surface Modification by Organic Solvents , 2019, The Journal of Physical Chemistry C.

[3]  L. Laffont,et al.  STEM-EELS identification of TiOXNY, TiN, Ti2N and O, N dissolution in the Ti2642S alloy oxidized in synthetic air at 650 °C , 2019, Corrosion Science.

[4]  Hang Zhou,et al.  Ball-milling preparation of titanium/graphene composites and its enhanced hydrogen storage ability , 2018, International Journal of Hydrogen Energy.

[5]  M. Mermoux,et al.  Raman spectroscopy study of detonation nanodiamond , 2018, Diamond and Related Materials.

[6]  M. Hirscher,et al.  The role of surface oxides on hydrogen sorption kinetics in titanium thin films , 2018 .

[7]  J. Caro,et al.  Amorphous, turbostratic and crystalline carbon membranes with hydrogen selectivity , 2016 .

[8]  T. Ichikawa,et al.  Electrochemical Performance of Titanium Hydride for Bulk-Type All-Solid-State Lithium-Ion Batteries , 2016 .

[9]  Craig E. Buckley,et al.  Metal hydride thermal heat storage prototype for concentrating solar thermal power , 2015 .

[10]  Theodore Motyka,et al.  SCREENING ANALYSIS OF METAL HYDRIDE BASED THERMAL ENERGY STORAGE SYSTEMS FOR CONCENTRATING SOLAR POWER PLANTS , 2014 .

[11]  Bruno G. Pollet,et al.  Metal hydride hydrogen compressors: A review , 2014 .

[12]  T. Ichikawa,et al.  Hydrogen absorption of catalyzed magnesium below room temperature , 2013 .

[13]  Masakoto Kanezashi,et al.  Evaluation and fabrication of pore‐size‐tuned silica membranes with tetraethoxydimethyl disiloxane for gas separation , 2011 .

[14]  J. Tarascon,et al.  Metal hydrides for lithium-ion batteries. , 2008, Nature materials.

[15]  S. H. Kim,et al.  Hydrogen separation by multi-bed pressure swing adsorption of synthesis gas , 2008 .

[16]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[17]  A. Feldhoff,et al.  The Complex Bonding of Titanium Nitride Layers in C/Mg Composites Revealed by ELNES Features , 2000 .

[18]  Wilhelm F. Maier,et al.  hydrophobic silica membranes for gas separation , 1999 .

[19]  Lihong Zhang,et al.  A study on the oxidation and carbon diffusion of TiC in alumina–titanium carbide ceramics using XPS and Raman spectroscopy , 1998 .

[20]  Wei-E Wang Thermodynamic evaluation of the titanium-hydrogen system , 1996 .

[21]  Yu. F. Shmal’ko,et al.  Series of metal hydride high pressure hydrogen compressors , 1995 .

[22]  Shigeyuki Uemiya,et al.  Separation of hydrogen through palladium thin film supported on a porous glass tube , 1991 .

[23]  Y. Hirooka,et al.  A study of hydrogen absorption and desorption by titanium , 1981 .

[24]  K.H.J. Buschow,et al.  Hydrogen absorption in LaNi5 and related compounds: Experimental observations and their explanation , 1974 .