Multidimensional Filtering Approach Based on Contextual Information

Existing recommended systems offer calculation of recommendation for user-item with e-commerce. But these systems omit much available information. It is user's contextual information. Thus accuracy of recommender systems is relatively lower. Mostly excepted information is difficult to clearly define the attributes and to calculate the values as the numerical data. If this contextual information can be changed into calculable element in recommender system, it can become the improved recommendation technique. This paper proposes multidimensional approach additionally applying contextual information for 2 dimensions based on existing recommendation system

[1]  Yoav Shoham,et al.  Fab: content-based, collaborative recommendation , 1997, CACM.

[2]  John Riedl,et al.  Combining Collaborative Filtering with Personal Agents for Better Recommendations , 1999, AAAI/IAAI.

[3]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[4]  Naoki Abe,et al.  Collaborative Filtering Using Weighted Majority Prediction Algorithms , 1998, ICML.

[5]  Raymond J. Mooney and Paul N. Bennett and Loriene Roy,et al.  Book Recommending Using Text Categorization with Extracted Information , 1998 .

[6]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[7]  David G. Stork,et al.  Pattern Classification , 1973 .

[8]  John Riedl,et al.  Application of Dimensionality Reduction in Recommender Systems , 2000 .

[9]  N. Klein,et al.  Context Effects on Effort and Accuracy in Choice: An Enquiry into Adaptive Decision Making , 1989 .

[10]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[11]  Gerald Salton,et al.  Automatic text processing , 1988 .

[12]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[13]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[14]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[15]  Michael J. Pazzani,et al.  Learning and Revising User Profiles: The Identification of Interesting Web Sites , 1997, Machine Learning.

[16]  Elaine Rich,et al.  User Modeling via Stereotypes , 1998, Cogn. Sci..

[17]  M. Powell,et al.  Approximation theory and methods , 1984 .

[18]  J. Mazanec,et al.  Consumer decision making. , 1994 .

[19]  Naohiro Ishii,et al.  Memory-Based Weighted-Majority Prediction for Recommender Systems , 1999, SIGIR 1999.

[20]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[21]  Pattie Maes,et al.  Social information filtering: algorithms for automating “word of mouth” , 1995, CHI '95.

[22]  Michael J. Pazzani,et al.  A Framework for Collaborative, Content-Based and Demographic Filtering , 1999, Artificial Intelligence Review.

[23]  R. Olshavsky,et al.  Task Complexity and Contingent Processing in Brand Choice , 1979 .

[24]  Lise Getoor,et al.  Using Probabilistic Relational Models for Collaborative Filtering , 1999 .