Fault-Tolerant Operation of a Quantum Error-Correction Code

Quantum error correction protects fragile quantum information by encoding it in a larger quantum system whose extra degrees of freedom enable the detection and correction of errors. An encoded logical qubit thus carries increased complexity compared to a bare physical qubit. Fault-tolerant protocols contain the spread of errors and are essential for realizing error suppression with an error-corrected logical qubit. Here we experimentally demonstrate fault-tolerant preparation, rotation, error syndrome extraction, and measurement on a logical qubit encoded in the 9-qubit Bacon-Shor code. For the logical qubit, we measure an average fault-tolerant preparation and measurement error of 0.6% and a transversal Clifford gate with an error of 0.3% after error correction. The result is an encoded logical qubit whose logical fidelity exceeds the fidelity of the entangling operations used to create it. We compare these operations with non-fault-tolerant protocols capable of generating arbitrary logical states, and observe the expected increase in error. We directly measure the four Bacon-Shor stabilizer generators and are able to detect single qubit Pauli errors. These results show that fault-tolerant quantum systems are currently capable of logical primitives with error rates lower than their constituent parts. With the future addition of intermediate measurements, the full power of scalable quantum error-correction can be achieved.

[1]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[2]  Mazyar Mirrahimi,et al.  Extending the lifetime of a quantum bit with error correction in superconducting circuits , 2016, Nature.

[3]  Robin Harper,et al.  Fault-Tolerant Logical Gates in the IBM Quantum Experience. , 2018, Physical review letters.

[4]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[5]  S. Poletto,et al.  Detecting bit-flip errors in a logical qubit using stabilizer measurements , 2014, Nature Communications.

[6]  Li Li,et al.  Quantum teleportation of physical qubits into logical code spaces , 2020, Proceedings of the National Academy of Sciences.

[7]  Kyungjoo Noh,et al.  Fault-tolerant bosonic quantum error correction with the surface–Gottesman-Kitaev-Preskill code , 2019, Physical Review A.

[8]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[9]  Raymond Laflamme,et al.  A Theory of Quantum Error-Correcting Codes , 1996 .

[10]  T. Gullion,et al.  New, compensated Carr-Purcell sequences , 1990 .

[11]  C. K. Andersen,et al.  Repeated quantum error detection in a surface code , 2019, Nature Physics.

[12]  Klaus Molmer,et al.  Multiparticle Entanglement of Hot Trapped Ions , 1998, quant-ph/9810040.

[13]  Liang Jiang,et al.  Implementing a universal gate set on a logical qubit encoded in an oscillator , 2016, Nature Communications.

[14]  Ben Reichardt,et al.  Quantum Universality from Magic States Distillation Applied to CSS Codes , 2005, Quantum Inf. Process..

[15]  Craig Gidney,et al.  How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits , 2019, Quantum.

[16]  C. Figgatt,et al.  Demonstration of the QCCD trapped-ion quantum computer architecture , 2020, 2003.01293.

[17]  Panos Aliferis,et al.  Subsystem fault tolerance with the Bacon-Shor code. , 2007, Physical review letters.

[18]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[19]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[20]  E. Knill,et al.  Threshold Accuracy for Quantum Computation , 1996, quant-ph/9610011.

[21]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[22]  C. Monroe,et al.  Architecture for a large-scale ion-trap quantum computer , 2002, Nature.

[23]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[24]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  David J. Wineland,et al.  Complete Methods Set for Scalable Ion Trap Quantum Information Processing , 2009, Science.

[26]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[27]  E. Knill,et al.  Realization of quantum error correction , 2004, Nature.

[28]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[29]  S. Lloyd Quantum-Mechanical Computers , 1995 .

[30]  V. Negnevitsky,et al.  Encoding a qubit in a trapped-ion mechanical oscillator , 2018, Nature.

[31]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[32]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[33]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[34]  R. Blatt,et al.  Quantum computations on a topologically encoded qubit , 2014, Science.

[35]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[36]  Peter Lukas Wilhelm Maunz,et al.  High Optical Access Trap 2.0. , 2016 .

[37]  Kenneth R. Brown,et al.  Direct measurement of Bacon-Shor code stabilizers , 2018, Physical Review A.

[38]  Kenneth R. Brown,et al.  2D Compass Codes , 2018, Physical Review X.

[39]  Dmitri Maslov,et al.  Basic circuit compilation techniques for an ion-trap quantum machine , 2016, ArXiv.

[40]  Shilin Huang,et al.  Logical performance of 9 qubit compass codes in ion traps with crosstalk errors , 2019 .

[41]  I. V. Inlek,et al.  Quantum gates with phase stability over space and time , 2014 .

[42]  C. Monroe,et al.  Quantum Gates on Individually-Addressed Atomic Qubits Subject to Noisy Transverse Motion , 2020, 2007.06768.

[43]  Andrew W. Cross,et al.  Experimental Demonstration of Fault-Tolerant State Preparation with Superconducting Qubits. , 2017, Physical review letters.

[44]  Damian S. Steiger,et al.  Quantum computing enhanced computational catalysis , 2020, Physical Review Research.

[45]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[46]  Caroline Figgatt,et al.  Fault-tolerant quantum error detection , 2016, Science Advances.

[47]  M. Gu,et al.  Single ion-qubit exceeding one hour coherence time. , 2020, 2008.00251.

[48]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[49]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[50]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[51]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[52]  D. Abrams,et al.  Simulation of Many-Body Fermi Systems on a Universal Quantum Computer , 1997, quant-ph/9703054.

[53]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[54]  Xiaobo Zhu,et al.  Experimental verification of five-qubit quantum error correction with superconducting qubits , 2019 .

[55]  Dorit Aharonov,et al.  Fault-tolerant Quantum Computation with Constant Error Rate * , 1999 .

[56]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.