GPU‐accelerated molecular mechanics computations

In this article, we describe an improved cell‐list approach designed to match the Kepler architecture of General‐purpose graphics processing units (GPGPU). We explain how our approach improves load balancing for the above algorithm and how warp intrinsics are used to implement Newton's third law for the nonbonded force calculations. We also talk through our approach to exclusions handling together with a method to calculate bonded forces and 1–4 electrostatic scaling using a single Cuda kernel. Performance benchmarks are included in the last sections to show the linear scaling of our implementation using a step minimization method. In addition, multiple performance benchmarks demonstrate the contribution of various optimizations we used for our implementations. © 2013 Wiley Periodicals, Inc.

[1]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[2]  Jie Cheng,et al.  Programming Massively Parallel Processors. A Hands-on Approach , 2010, Scalable Comput. Pract. Exp..

[3]  Yunfei Chen,et al.  GPU accelerated molecular dynamics simulation of thermal conductivities , 2007, J. Comput. Phys..

[4]  M J Harvey,et al.  ACEMD: Accelerating Biomolecular Dynamics in the Microsecond Time Scale. , 2009, Journal of chemical theory and computation.

[5]  Klaus Schulten,et al.  Multilevel summation of electrostatic potentials using graphics processing units , 2009, Parallel Comput..

[6]  Pedro Gonnet,et al.  A simple algorithm to accelerate the computation of non‐bonded interactions in cell‐based molecular dynamics simulations , 2007, J. Comput. Chem..

[7]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 1. Generalized Born , 2012, Journal of chemical theory and computation.

[8]  A. Arnold,et al.  Harvesting graphics power for MD simulations , 2007, 0709.3225.

[9]  Andreas P. Eichenberger,et al.  Definition and testing of the GROMOS force-field versions 54A7 and 54B7 , 2011, European Biophysics Journal.

[10]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[11]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..

[12]  Weiguo Liu,et al.  Accelerating molecular dynamics simulations using Graphics Processing Units with CUDA , 2008, Comput. Phys. Commun..

[13]  Thomas A. Halgren,et al.  Merck molecular force field. IV. conformational energies and geometries for MMFF94 , 1996 .

[14]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[15]  Vijay S. Pande,et al.  Efficient nonbonded interactions for molecular dynamics on a graphics processing unit , 2010, J. Comput. Chem..

[16]  M J Harvey,et al.  An Implementation of the Smooth Particle Mesh Ewald Method on GPU Hardware. , 2009, Journal of chemical theory and computation.

[17]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[18]  Chris Morley,et al.  Open Babel: An open chemical toolbox , 2011, J. Cheminformatics.

[19]  Nicola Zonta,et al.  Accessible haptic technology for drug design applications , 2009, Journal of molecular modeling.

[20]  Shigeomi Chono,et al.  GPU-accelerated molecular dynamics simulation for study of liquid crystalline flows , 2010, J. Comput. Phys..

[21]  T. Halgren,et al.  Merck molecular force field. V. Extension of MMFF94 using experimental data, additional computational data, and empirical rules , 1996 .

[22]  David E. Shaw,et al.  Zonal methods for the parallel execution of range-limited N-body simulations , 2007, J. Comput. Phys..

[23]  Alex Fit-Florea,et al.  Precision and Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs , 2011 .

[24]  T. Halgren Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions , 1996 .

[25]  Thomas A. Halgren,et al.  The representation of van der Waals (vdW) interactions in molecular mechanics force fields: potential form, combination rules, and vdW parameters , 1992 .

[26]  T. Halgren MMFF VII. Characterization of MMFF94, MMFF94s, and other widely available force fields for conformational energies and for intermolecular‐interaction energies and geometries , 1999, Journal of computational chemistry.

[27]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[28]  Eduard S. Fomin,et al.  Consideration of data load time on modern processors for the Verlet table and linked‐cell algorithms , 2011, J. Comput. Chem..

[29]  Wilfred F. van Gunsteren,et al.  A GPU solvent–solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software , 2010, J. Comput. Chem..