Quantum-mechanical machinery for rational decision-making in classical guessing game
暂无分享,去创建一个
Jeongho Bang | Junghee Ryu | Jinhyoung Lee | Marcin Pawłowski | Byoung S. Ham | M. Pawłowski | Jinhyoung Lee | Jeongho Bang | Junghee Ryu | B. Ham
[1] E. Diamanti,et al. Nonlocality and conflicting interest games. , 2014, Physical review letters.
[2] S. Hart,et al. Handbook of Game Theory with Economic Applications , 1992 .
[3] Signatures of quantum behavior in single-qubit weak measurements. , 2005, Physical review letters.
[4] Guy Louchard,et al. The Guessing Secrets problem: a probabilistic approach , 2005, J. Algorithms.
[5] Colin Camerer. Behavioral Game Theory: Experiments in Strategic Interaction , 2003 .
[6] S. Balakrishnan,et al. Classical rules and quantum strategies in penny flip game , 2013, Quantum Inf. Process..
[7] Jens Eisert,et al. Quantum games , 2000 .
[8] Noah Linden,et al. Connection between Bell nonlocality and Bayesian game theory , 2012, Nature Communications.
[9] Julian F. Miller,et al. Representation of Boolean quantum circuits as reed–Muller expansions , 2003, quant-ph/0305134.
[10] A. Cabello. Kochen-Specker theorem for a single qubit using positive operator-valued measures. , 2002, Physical review letters.
[11] J. Eisert,et al. Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.
[12] Jinhyoung Lee,et al. A quantum speedup in machine learning: finding an N-bit Boolean function for a classification , 2013, 1303.6055.
[13] Susanne Hertz,et al. Polarization Optics In Telecommunications , 2016 .
[14] S. Fortunato,et al. Statistical physics of social dynamics , 2007, 0710.3256.
[15] L. Vaidman,et al. Quantum advantages in classically defined tasks , 2008 .
[16] Edward W. Piotrowski,et al. An Invitation to Quantum Game Theory , 2002, ArXiv.
[17] S. Aaronson. Read the fine print , 2015, Nature Physics.
[18] Scott Aaronson,et al. Quantum Machine Learning Algorithms : Read the Fine Print , 2015 .
[19] S. J. van Enk,et al. Classical rules in quantum games , 2002 .
[20] Hong Guo,et al. A survey of quantum games , 2008, Decis. Support Syst..
[21] R. Schack,et al. Classical model for bulk-ensemble NMR quantum computation , 1999, quant-ph/9903101.
[22] Frank Thomson Leighton,et al. Guessing secrets , 2001, SODA '01.
[23] Jinhyoung Lee,et al. Operational quasiprobabilities for qudits , 2012, 1206.6986.
[24] Ross D. Shachter,et al. Decision Making Using Probabilistic Inference Methods , 1992, UAI.
[25] van Enk. Quantum and classical game strategies , 2000 .
[26] A. Grudka,et al. Is there contextuality for a single qubit? , 2007, Physical review letters.
[27] Jörgen W. Weibull,et al. Evolutionary Game Theory , 1996 .
[28] M. Bourennane,et al. Quantum Bidding in Bridge , 2014, 1403.4280.
[29] M. A. Lohe,et al. An analysis of the quantum penny flip game using geometric algebra , 2009, 0902.4296.
[30] Colin Benjamin,et al. Do quantum strategies always win? A case study in the entangled quantum penny flip game , 2014, ArXiv.
[31] Andrew N Jordan,et al. Leggett-Garg inequality with a kicked quantum pump. , 2006, Physical review letters.
[32] D. Meyer. Quantum strategies , 1998, quant-ph/9804010.
[33] Neil Johnson,et al. Efficiency and formalism of quantum games , 2003 .