Report 34: COVID-19 infection fatality ratio: estimates from seroprevalence

1 MRC Centre for Global Infectious Disease Analysis & WHO Collaborating Centre for infectious Disease Modelling; Abdul Latif Jameel Institute for Disease and Emergency Analytics (J-IDEA), School of Public Health, Imperial College London, UK 2 Department of Clinical Biochemistry, Royal Infirmary of Edinburgh, Edinburgh, UK 3 Nuffield Department of Clinical Neurosciences, University of Oxford 4 Department of Mathematics, Imperial College, London, UK

[1]  P. Glasziou,et al.  Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: Systematic review and meta-analysis. , 2020, Journal of the Association of Medical Microbiology and Infectious Disease Canada = Journal officiel de l'Association pour la microbiologie medicale et l'infectiologie Canada.

[2]  S. Greene,et al.  Estimating the infection-fatality risk of SARS-CoV-2 in New York City during the spring 2020 pandemic wave: a model-based analysis , 2020, The Lancet Infectious Diseases.

[3]  B. Horta,et al.  SARS-CoV-2 antibody prevalence in Brazil: results from two successive nationwide serological household surveys , 2020, The Lancet Global Health.

[4]  Marcio K. Oikawa,et al.  COVID-19 herd immunity in the Brazilian Amazon , 2020, medRxiv.

[5]  S. Bhatt,et al.  Report 31: Estimating the burden of COVID-19 in Damascus, Syria: an analysis of novel data sources to infer mortality under-ascertainment , 2020 .

[6]  D. Cummings,et al.  Age-specific mortality and immunity patterns of SARS-CoV-2 infection in 45 countries , 2020, medRxiv.

[7]  K. To,et al.  COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing , 2020, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[8]  C. Donnelly,et al.  Antibody prevalence for SARS-CoV-2 in England following first peak of the pandemic: REACT2 study in 100,000 adults , 2020, medRxiv.

[9]  S. Ladhani,et al.  High prevalence of SARS-CoV-2 antibodies in care homes affected by COVID-19: Prospective cohort study, England , 2020, EClinicalMedicine.

[10]  P. Bieniasz,et al.  Longitudinal analysis of clinical serology assay performance and neutralising antibody levels in COVID19 convalescents , 2020, medRxiv.

[11]  D. Buckeridge,et al.  SeroTracker: a global SARS-CoV-2 seroprevalence dashboard , 2020, The Lancet Infectious Diseases.

[12]  S. Riley,et al.  Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey , 2020, Thorax.

[13]  Andrew T. Levin,et al.  ASSESSING THE AGE SPECIFICITY OF INFECTION FATALITY RATES FOR COVID-19: META-ANALYSIS & PUBLIC POLICY IMPLICATIONS , 2020, medRxiv.

[14]  E. MacMahon,et al.  Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection , 2020, medRxiv.

[15]  M. Hernán,et al.  Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study , 2020, The Lancet.

[16]  Morten Nielsen,et al.  Robust T Cell Immunity in Convalescent Individuals with Asymptomatic or Mild COVID-19 , 2020, Cell.

[17]  Jennifer L. Bell,et al.  Effect of Dexamethasone in Hospitalized Patients with COVID-19: Preliminary Report , 2020, medRxiv.

[18]  Christl A. Donnelly,et al.  The impact of COVID-19 and strategies for mitigation and suppression in low- and middle-income countries , 2020, Science.

[19]  S. Lauer,et al.  Serology-informed estimates of SARS-COV-2 infection fatality risk in Geneva, Switzerland , 2020, medRxiv.

[20]  A. Flahault,et al.  Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study , 2020, The Lancet.

[21]  B. Greenhouse,et al.  Are SARS-CoV-2 seroprevalence estimates biased? , 2020, The Journal of infectious diseases.

[22]  David R. Holtgrave,et al.  Cumulative incidence and diagnosis of SARS-CoV-2 infection in New York , 2020, Annals of Epidemiology.

[23]  Gregory M. Goldgof,et al.  SARS-CoV-2 seroprevalence and neutralizing activity in donor and patient blood from the San Francisco Bay Area , 2020, medRxiv.

[24]  A. Gelman,et al.  Bayesian Analysis of Tests with Unknown Specificity and Sensitivity , 2020, medRxiv.

[25]  S. V. Oliveira,et al.  Underreporting of Death by COVID-19 in Brazil's Second Most Populous State , 2020, Frontiers in Public Health.

[26]  A. Fontanet,et al.  Serologic responses to SARS-CoV-2 infection among hospital staff with mild disease in eastern France , 2020, EBioMedicine.

[27]  J. Ioannidis,et al.  The infection fatality rate of COVID-19 inferred from seroprevalence data , 2020, medRxiv.

[28]  Sarah K. Helman,et al.  Quantifying antibody kinetics and RNA shedding during early-phase SARS-CoV-2 infection , 2020, medRxiv.

[29]  G. Meyerowitz-Katz,et al.  A systematic review and meta-analysis of published research data on COVID-19 infection fatality rates , 2020, International Journal of Infectious Diseases.

[30]  S. Yerly,et al.  Validation of a commercially available SARS-CoV-2 serological immunoassay , 2020, Clinical Microbiology and Infection.

[31]  C. Reusken,et al.  Herd immunity is not a realistic exit strategy during a COVID-19 outbreak , 2020 .

[32]  Mark S. Anderson,et al.  Test performance evaluation of SARS-CoV-2 serological assays , 2020, medRxiv.

[33]  S. Wood,et al.  COVID-19 and the difficulty of inferring epidemiological parameters from clinical data , 2020, The Lancet Infectious Diseases.

[34]  Jens K. Boldsen,et al.  Estimation of SARS-CoV-2 Infection Fatality Rate by Real-time Antibody Screening of Blood Donors , 2020, medRxiv.

[35]  J. Lessler,et al.  Estimating the burden of SARS-CoV-2 in France , 2020, Science.

[36]  S. Eubank,et al.  Commentary on Ferguson, et al., “Impact of Non-pharmaceutical Interventions (NPIs) to Reduce COVID-19 Mortality and Healthcare Demand” , 2020, Bulletin of Mathematical Biology.

[37]  C. Whittaker,et al.  Estimates of the severity of coronavirus disease 2019: a model-based analysis , 2020, The Lancet Infectious Diseases.

[38]  C. Whittaker,et al.  Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand , 2020 .

[39]  E. Dong,et al.  An interactive web-based dashboard to track COVID-19 in real time , 2020, The Lancet Infectious Diseases.

[40]  Jing Zhao,et al.  Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia , 2020, The New England journal of medicine.

[41]  N. Linton,et al.  Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data , 2020, medRxiv.

[42]  Adelina Comas-Herrera,et al.  Mortality associated with COVID-19 outbreaks in care homes: early international evidence , 2020 .

[43]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[44]  A. Dreher Modeling Survival Data Extending The Cox Model , 2016 .

[45]  M. Delignette-Muller,et al.  fitdistrplus: An R Package for Fitting Distributions , 2015 .

[46]  Cécile Viboud,et al.  Antibody response to influenza vaccination in the elderly: a quantitative review. , 2006, Vaccine.

[47]  P. Grambsch,et al.  A Package for Survival Analysis in S , 1994 .

[48]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[49]  B. Gladen,et al.  Estimating prevalence from the results of a screening test. , 1978, American journal of epidemiology.