Central kinematics of the globular cluster NGC 2808: upper limit on the mass of an intermediate-mass black hole ,

Context. Globular clusters are an excellent laboratory for stellar population and dynamical research. Recent studies have shown that these stellar systems are not as simple as previously assumed. With multiple stellar populations as well as outer rotation and mass segregation they turn out to exhibit high complexity. This includes intermediate-mass black holes (IMBHs) which are proposed to sit at the centers of some massive globular clusters. Today's high angular resolution ground based spectrographs allow velocity-dispersion measurements at a spatial resolution comparable to the radius of influence for plausible IMBH masses, and to detect changes in the inner velocity-dispersion profile. Together with high quality photometric data from HST, it is possible to constrain black-hole masses by their kinematic signatures. Aims. We determine the central velocity-dispersion profile of the globular cluster NGC 2808 using VLT/FLAMES spectroscopy. In combination with HST/ACS data our goal is to probe whether this massive cluster hosts an IMBH at its center and constrain the cluster mass to light ratio as well as its total mass. Methods. We derive a velocity-dispersion profile from integral field spectroscopy in the center and Fabry Perot data for larger radii. High resolution HST data are used to obtain the surface brightness profile. Together, these data sets are compared to dynamical models with varying parameters such as mass to light ratio profiles and black-hole masses. Results. Using analytical Jeans models in combination with variable M/L V profiles from N-body simulations we find that the best fit model is a no black hole solution. After applying various Monte Carlo simulations to estimate the uncertainties, we derive an upper limit of the back hole mass of M BH < 1 × 10 4 M · (with 95% confidence limits) and a global mass-to-light ratio of M/L V = (2.1 ± 0.2) M ·/L ·.

[1]  N. Neumayer,et al.  High-velocity stars in the cores of globular clusters: the illustrative case of NGC 2808 , 2012, 1205.4022.

[2]  L. Chomiuk,et al.  NO EVIDENCE FOR INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS: STRONG CONSTRAINTS FROM THE JVLA , 2012, 1203.6352.

[3]  T. Harrison,et al.  A SEARCH FOR AN INTERMEDIATE-MASS BLACK HOLE IN THE CORE OF THE GLOBULAR CLUSTER NGC 6266 , 2012 .

[4]  K. Gebhardt,et al.  A Dynamical N-body model for the central region of ω Centauri , 2011, 1111.5011.

[5]  H. Baumgardt,et al.  TESTING PHOTOMETRIC DIAGNOSTICS FOR THE DYNAMICAL STATE AND POSSIBLE INTERMEDIATE-MASS BLACK HOLE PRESENCE IN GLOBULAR CLUSTERS , 2011, 1108.4425.

[6]  K. Gebhardt,et al.  Kinematic signature of an intermediate-mass black hole in the globular cluster NGC 6388 , 2011, 1107.4243.

[7]  A. Dotter,et al.  THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. X. NEW DETERMINATIONS OF CENTERS FOR 65 CLUSTERS , 2010, 1008.2755.

[8]  P. T. de Zeeuw,et al.  VERY LARGE TELESCOPE KINEMATICS FOR OMEGA CENTAURI: FURTHER SUPPORT FOR A CENTRAL BLACK HOLE , 2010, 1007.4559.

[9]  A. Tzioumis,et al.  Radio observations of NGC 6388: an upper limit on the mass of its central black hole , 2010, 1003.4604.

[10]  Roeland P. van der Marel,et al.  NEW LIMITS ON AN INTERMEDIATE-MASS BLACK HOLE IN OMEGA CENTAURI. I. HUBBLE SPACE TELESCOPE PHOTOMETRY AND PROPER MOTIONS , 2009, 0905.0627.

[11]  Jay Anderson,et al.  NEW LIMITS ON AN INTERMEDIATE-MASS BLACK HOLE IN OMEGA CENTAURI. II. DYNAMICAL MODELS , 2009, 0905.0638.

[12]  Michael J. Williams,et al.  Kinematic constraints on the stellar and dark matter content of spiral and S0 galaxies , 2009, 0909.0680.

[13]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[14]  Z. Haiman,et al.  THE ASSEMBLY OF SUPERMASSIVE BLACK HOLES AT HIGH REDSHIFTS , 2008, 0807.4702.

[15]  T. Maccarone,et al.  Radio observations of NGC 2808 and other globular clusters: constraints on intermediate-mass black holes , 2008, 0806.2387.

[16]  Michele Cappellari,et al.  Measuring the inclination and mass-to-light ratio of axisymmetric galaxies via anisotropic Jeans models of stellar kinematics , 2008, 0806.0042.

[17]  Karl Gebhardt,et al.  Gemini and Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in ω Centauri , 2008 .

[18]  HO LUISC.,et al.  The Astrophysical Journal. Preprint typeset using L ATEX style emulateapj v. 11/12/01 AN INTERMEDIATE-MASS BLACK HOLE IN THE GLOBULAR CLUSTER G1: IMPROVED SIGNIFICANCE FROM NEW KECK AND HUBBLE SPACE TELESCOPE OBSERVATIONS 1 , 2005 .

[19]  A. de Koter,et al.  On the evolution and fate of super-massive stars , 2007, 0710.1181.

[20]  Amina Helmi,et al.  Analysis and calibration of CaII triplet spectroscopy of red giant branch stars from VLT/FLAMES observations , 2007, 0710.0798.

[21]  W. Goss,et al.  VERY LARGE ARRAY LIMITS FOR INTERMEDIATE-MASS BLACK HOLES IN THREE GLOBULAR CLUSTERS , 2007, 0710.0339.

[22]  Luis C. Ho,et al.  Radio Emission from the Intermediate-Mass Black Hole in the Globular Cluster G1 , 2007, 0704.1458.

[23]  J. Anderson,et al.  A Triple Main Sequence in the Globular Cluster NGC 2808 , 2007, astro-ph/0703767.

[24]  A. Kong X-Ray Localization of the Globular Cluster G1 with XMM-Newton , 2007, astro-ph/0703662.

[25]  P. Miocchi The presence of intermediate-mass black holes in globular clusters and their connection with extreme horizontal branch stars , 2007, astro-ph/0702479.

[26]  Xiaohui Fan,et al.  Evolution of high-redshift quasars , 2006 .

[27]  Hubble Space Telescope Proper Motions and Stellar Dynamics in the Core of the Globular Cluster 47 Tucanae , 2006, astro-ph/0607597.

[28]  David Pooley,et al.  X-Rays from the Globular Cluster G1: Intermediate-Mass Black Hole or Low-Mass X-Ray Binary? , 2006, astro-ph/0605049.

[29]  K. Gebhardt,et al.  Surface Brightness Profiles of Galactic Globular Clusters from Hubble Space Telescope Images , 2006, astro-ph/0604251.

[30]  R. P. van der Marel,et al.  Resolved Massive Star Clusters in the Milky Way and Its Satellites: Brightness Profiles and a Catalog of Fundamental Parameters , 2005, astro-ph/0605132.

[31]  L. Ho,et al.  An Intermediate-Mass Black Hole in the Globular Cluster G1: Improved Significance from New Keck and Hubble Space Telescope Observations , 2005, astro-ph/0508251.

[32]  Heidelberg,et al.  Runaway collisions in young star clusters - II. Numerical results , 2005, astro-ph/0503130.

[33]  T. Maccarone,et al.  Upper limits on central black hole masses of globular clusters from radio emission and a possible black hole detection in the Ursa Minor dwarf galaxy , 2004, astro-ph/0411109.

[34]  S. Cassisi,et al.  ω Centauri: The Population Puzzle Goes Deeper , 2004, astro-ph/0403112.

[35]  P. Hut,et al.  Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.

[36]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[37]  Matthew Bierbaum,et al.  Formation of Massive Black Holes in Dense Star Clusters. I. Mass Segregation and Core Collapse , 2003, astro-ph/0308449.

[38]  J. Makino,et al.  Dynamical evolution of star clusters in tidal fields , 2002, astro-ph/0211471.

[39]  J. Gerssen,et al.  Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in the Globular Cluster M15. II. Kinematic Analysis and Dynamical Modeling , 2002, astro-ph/0209315.

[40]  M. Cappellari Efficient multi-Gaussian expansion of galaxies , 2002, astro-ph/0201430.

[41]  M. Miller,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[42]  P. Dokkum,et al.  Cosmic-Ray Rejection by Laplacian Edge Detection , 2001, astro-ph/0108003.

[43]  Toshikazu Ebisuzaki,et al.  UvA-DARE ( Digital Academic Repository ) Missing Link Found ? The " Runaway " Path to Supermassive Black Holes , 2001 .

[44]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[45]  P. Kroupa On the variation of the initial mass function , 2000, astro-ph/0009005.

[46]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[47]  C. Tout,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[48]  K. Gebhardt,et al.  Canada-France-Hawaii Telescope Adaptive Optics Observations of the Central Kinematics in M15 , 1999, astro-ph/9912172.

[49]  S. Aarseth From NBODY1 to NBODY6: The Growth of an Industry , 1999 .

[50]  P. Stetson,et al.  Fabry-Perot Observations of Globular Clusters.III.M15 , 1996, astro-ph/9612116.

[51]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[52]  Scott Trager,et al.  Catalogue of Galactic globular-cluster surface-brightness profiles , 1995 .

[53]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[54]  G. Meylan,et al.  Two high-velocity stars shot out from the core of the globular cluster 47 Tucanae , 1991 .

[55]  Raymond E. White,et al.  Axial Ratios and Orientations for 100 Galactic Globular Star Clusters , 1987 .

[56]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[57]  J. Gunn,et al.  Dynamical studies of globular clusters based on photoelectric radial velocities of individual stars. I. M3. , 1979 .

[58]  W. Harris The unusual horizontal branch of NGC 2808 , 1974 .

[59]  Ivan R. King,et al.  The structure of star clusters. I. an empirical density law , 1962 .