Generating large-scale cluster states

Quantum Computing The development of a practical quantum computer requires universality, scalability, and fault tolerance. Although much progress is being made in circuit platforms in which arrays of qubits are addressed and manipulated individually, scale-up of such systems is experimentally challenging. Asavanant et al. and Larsen et al. explore an alternative route: measurement-based quantum computation, which is a platform based on the generation of large-scale cluster states. As these are optically prepared and easier to handle (one simply performs local measurements on each individual component of the cluster state), such a platform is readily scalable and fault tolerant. The topology of the cluster state ensures that the approach meets the requirements for quantum computation. Science , this issue p. [373][1], p. [369][2] [1]: /lookup/doi/10.1126/science.aay2645 [2]: /lookup/doi/10.1126/science.aay4354