Low Latency Geo-distributed Data Analytics

Low latency analytics on geographically distributed datasets (across datacenters, edge clusters) is an upcoming and increasingly important challenge. The dominant approach of aggregating all the data to a single datacenter significantly inflates the timeliness of analytics. At the same time, running queries over geo-distributed inputs using the current intra-DC analytics frameworks also leads to high query response times because these frameworks cannot cope with the relatively low and variable capacity of WAN links. We present Iridium, a system for low latency geo-distributed analytics. Iridium achieves low query response times by optimizing placement of both data and tasks of the queries. The joint data and task placement optimization, however, is intractable. Therefore, Iridium uses an online heuristic to redistribute datasets among the sites prior to queries' arrivals, and places the tasks to reduce network bottlenecks during the query's execution. Finally, it also contains a knob to budget WAN usage. Evaluation across eight worldwide EC2 regions using production queries show that Iridium speeds up queries by 3× -- 19× and lowers WAN usage by 15% -- 64% compared to existing baselines.

[1]  Carlo Curino,et al.  WANalytics: Geo-Distributed Analytics for a Data Intensive World , 2015, SIGMOD Conference.

[2]  Carlo Curino,et al.  Global Analytics in the Face of Bandwidth and Regulatory Constraints , 2015, NSDI.

[3]  Carlo Curino,et al.  WANalytics: Analytics for a Geo-Distributed Data-Intensive World , 2015, CIDR.

[4]  Ion Stoica,et al.  The Power of Choice in Data-Aware Cluster Scheduling , 2014, OSDI.

[5]  Wei Lin,et al.  Apollo: Scalable and Coordinated Scheduling for Cloud-Scale Computing , 2014, OSDI.

[6]  Ramesh K. Sitaraman,et al.  Overlay Networks: An Akamai Perspective , 2014 .

[7]  Antony I. T. Rowstron,et al.  Decentralized task-aware scheduling for data center networks , 2014, SIGCOMM.

[8]  Srikanth Kandula,et al.  Multi-resource packing for cluster schedulers , 2014, SIGCOMM.

[9]  Ion Stoica,et al.  Efficient coflow scheduling with Varys , 2014, SIGCOMM.

[10]  Fan Yang,et al.  Mesa: Geo-Replicated, Near Real-Time, Scalable Data Warehousing , 2014, Proc. VLDB Endow..

[11]  Michael J. Freedman,et al.  Aggregation and Degradation in JetStream: Streaming Analytics in the Wide Area , 2014, NSDI.

[12]  Adam Wierman,et al.  This Paper Is Included in the Proceedings of the 11th Usenix Symposium on Networked Systems Design and Implementation (nsdi '14). Grass: Trimming Stragglers in Approximation Analytics Grass: Trimming Stragglers in Approximation Analytics , 2022 .

[13]  Diksha Verma,et al.  Quincy: Fair Scheduling for Distributed Computing Clusters , 2014 .

[14]  Scott Shenker,et al.  Discretized streams: fault-tolerant streaming computation at scale , 2013, SOSP.

[15]  Ethan Katz-Bassett,et al.  SPANStore: cost-effective geo-replicated storage spanning multiple cloud services , 2013, SOSP.

[16]  Ramesh Govindan,et al.  Mapping the expansion of Google's serving infrastructure , 2013, Internet Measurement Conference.

[17]  Srikanth Kandula,et al.  Achieving high utilization with software-driven WAN , 2013, SIGCOMM.

[18]  Srinivasan Seshan,et al.  Developing a predictive model of quality of experience for internet video , 2013, SIGCOMM.

[19]  Min Zhu,et al.  B4: experience with a globally-deployed software defined wan , 2013, SIGCOMM.

[20]  Scott Shenker,et al.  Usenix Association 10th Usenix Symposium on Networked Systems Design and Implementation (nsdi '13) 185 Effective Straggler Mitigation: Attack of the Clones , 2022 .

[21]  Ion Stoica,et al.  BlinkDB: queries with bounded errors and bounded response times on very large data , 2012, EuroSys '13.

[22]  Christopher Frost,et al.  Spanner: Google's Globally-Distributed Database , 2012, OSDI.

[23]  D. Zats,et al.  DeTail: reducing the flow completion time tail in datacenter networks , 2012, SIGCOMM '12.

[24]  Brighten Godfrey,et al.  Finishing flows quickly with preemptive scheduling , 2012, CCRV.

[25]  Elaine Shi,et al.  GUPT: privacy preserving data analysis made easy , 2012, SIGMOD Conference.

[26]  Srikanth Kandula,et al.  PACMan: Coordinated Memory Caching for Parallel Jobs , 2012, NSDI.

[27]  Srikanth Kandula,et al.  Reoptimizing Data Parallel Computing , 2012, NSDI.

[28]  Vijay Erramilli,et al.  TailGate: handling long-tail content with a little help from friends , 2012, WWW.

[29]  T. N. Vijaykumar,et al.  Deadline-aware datacenter tcp (D2TCP) , 2012, CCRV.

[30]  D. Zats,et al.  DeTail: reducing the flow completion time tail in datacenter networks , 2012, CCRV.

[31]  Nick Feamster,et al.  Broadband internet performance: a view from the gateway , 2011, SIGCOMM.

[32]  Michael Sirivianos,et al.  Inter-datacenter bulk transfers with netstitcher , 2011, SIGCOMM.

[33]  Michael I. Jordan,et al.  Managing data transfers in computer clusters with orchestra , 2011, SIGCOMM.

[34]  Antony I. T. Rowstron,et al.  Better never than late: meeting deadlines in datacenter networks , 2011, SIGCOMM.

[35]  Albert G. Greenberg,et al.  Reining in the Outliers in Map-Reduce Clusters using Mantri , 2010, OSDI.

[36]  Ramesh K. Sitaraman,et al.  The Akamai network: a platform for high-performance internet applications , 2010, OPSR.

[37]  Scott Shenker,et al.  Spark: Cluster Computing with Working Sets , 2010, HotCloud.

[38]  Hairong Kuang,et al.  The Hadoop Distributed File System , 2010, 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST).

[39]  Scott Shenker,et al.  Delay scheduling: a simple technique for achieving locality and fairness in cluster scheduling , 2010, EuroSys '10.

[40]  Zheng Shao,et al.  Hive - a petabyte scale data warehouse using Hadoop , 2010, 2010 IEEE 26th International Conference on Data Engineering (ICDE 2010).

[41]  Michael Isard,et al.  Distributed aggregation for data-parallel computing: interfaces and implementations , 2009, SOSP '09.

[42]  Andrew V. Goldberg,et al.  Quincy: fair scheduling for distributed computing clusters , 2009, SOSP '09.

[43]  Michael Stonebraker,et al.  A comparison of approaches to large-scale data analysis , 2009, SIGMOD Conference.

[44]  Randy H. Katz,et al.  Improving MapReduce Performance in Heterogeneous Environments , 2008, OSDI.

[45]  Sanjay Ghemawat,et al.  MapReduce: simplified data processing on large clusters , 2008, CACM.

[46]  Srikanth Kandula,et al.  Walking the tightrope: responsive yet stable traffic engineering , 2005, SIGCOMM '05.

[47]  Cheng Jin,et al.  MATE: multipath adaptive traffic engineering , 2002, Comput. Networks.

[48]  Mikkel Thorup,et al.  Traffic engineering with traditional IP routing protocols , 2002, IEEE Commun. Mag..

[49]  Donald Kossmann,et al.  The state of the art in distributed query processing , 2000, CSUR.

[50]  Patrick Valduriez,et al.  Principles of Distributed Database Systems , 1990 .

[51]  Wesley W. Chu,et al.  Optimal Query Processing for Distributed Database Systems , 1982, IEEE Transactions on Computers.

[52]  Eugene Wong,et al.  Query processing in a system for distributed databases (SDD-1) , 1981, TODS.