LUMINOSITY FUNCTIONS OF TYPE Ia SUPERNOVAE AND THEIR HOST GALAXIES FROM THE SLOAN DIGITAL SKY SURVEY

The sample of 137 low-redshift type Ia supernovae (SNe Ia) with 0.05 ⩽ z ⩽ 0.3 obtained from the Sloan Digital Sky Survey (SDSS)-II supernova survey for the southern equatorial stripe of 300 deg2 is used to derive the luminosity functions (LFs) of SNe Ia and of their host galaxies in the g, r, i passbands. We show that the LF of SNe Ia host galaxies matches well with that of galaxies in the general field, suggesting that the occurrence of SNe Ia does not favor a particular type of galaxy but is predominantly proportional to the luminosity of galaxies. The evidence is weak that the SNe rate varies with the color of host galaxies. The only evidence that points to possible correlation between the SN rate and star formation activity is that the SN rate in late-type galaxies is higher than that in early-type galaxies by 31% ± 35%. In our low-redshift sample, the component of type Ia SN rate that is proportional to star formation activity is not evident in the integrated SN rate, while our observation is compatible with the current two-component models. The sample contains eight SNe Ia whose host galaxies were not identified, but it is shown that their occurrence is consistent with them occurring in low-luminous galaxies beyond the survey. The LF of SNe Ia is approximately Gaussian with the full width at half-maximum being a factor of σ = 0.24 mag or 1.67 in luminosity. The Gaussian distribution becomes tighter if the ratio of extinction to reddening, RV, is lower than the characteristic value for the Milky Way and if luminosity is corrected for the light-curve shape. The average color excess is ≈0.07 mag, which is significantly smaller than reddening expected for field galaxies. This color excess does not vary with the distance of the SNe from the center of the host galaxy to 15 kpc. This suggests that the major part of the color excess appears to be either intrinsic or reddening that arises in the immediate environment of SNe, rather than interstellar reddening in host galaxies, and most of SNe Ia take place in a relatively dust-free environment.

[1]  G. Contopoulos Highlights of Astronomy , 1974 .

[2]  Naoki Yasuda,et al.  A Catalog of Morphologically Classified Galaxies from the Sloan Digital Sky Survey: North Equatorial Region , 2007, 0704.1743.

[3]  M. Della Valle,et al.  Type Ia supernovae in late type galaxies : reddening correction, scale height, and absolute maximum magnitude , 1992 .

[4]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[5]  M. Fukugita,et al.  The History of Cosmological Star Formation: Three Independent Approaches and a Critical Test Using the Extragalactic Background Light , 2006, astro-ph/0603257.

[6]  Walter A. Siegmund,et al.  The Luminosity Function of Galaxies in SDSS Commissioning Data , 2000, astro-ph/0012085.

[7]  A. Riess,et al.  Improved Distances to Type Ia Supernovae with Multicolor Light-Curve Shapes: MLCS2k2 , 2006, astro-ph/0612666.

[8]  A. Pastorello,et al.  Cepheid calibration of Type Ia supernovae and the Hubble constant , 2004 .

[9]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[10]  Ž. Ivezić,et al.  Astrometric Calibration of the Sloan Digital Sky Survey , 2002, astro-ph/0211375.

[11]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[12]  J. Brinkmann,et al.  The Hα Luminosity Function of Morphologically Classified Galaxies in the Sloan Digital Sky Survey , 2003, astro-ph/0312519.

[13]  S. E. Persson,et al.  A Study of the Type Ia/IIn Supernova 2005gj from X-ray to the Infrared: Paper I , 2007, 0706.4088.

[14]  J. Gunn,et al.  A Photometricity and Extinction Monitor at the Apache Point Observatory , 2001, astro-ph/0106511.

[15]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[16]  F. Mannucci,et al.  The Supernova rate per unit mass , 2004, astro-ph/0411450.

[17]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[18]  A. Goobar,et al.  The colour-lightcurve shape relation of type Ia supernovae and the reddening law , 2007, 0712.1155.

[19]  M. SubbaRao,et al.  The Luminosity Function of Morphologically Classified Galaxies in the Sloan Digital Sky Survey , 2002, astro-ph/0212405.

[20]  R. Nichol,et al.  The Galaxy Luminosity Function and Luminosity Density at Redshift z = 0.1 , 2002, astro-ph/0210215.

[21]  L. Strolger,et al.  The Extended HST Supernova Survey: The Rate of SNe Ia at z > 1.4 Remains Low , 2008, 0803.1130.

[22]  Maarten Schmidt,et al.  Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources , 1968 .

[23]  M. Fukugita,et al.  Supernovae in the Subaru Deep Field: an initial sample and Type Ia rate out to redshift 1.6 , 2007, 0707.0393.

[24]  M. Rees,et al.  Supernovae: A survey of current research , 1982 .

[25]  D. Madgwick,et al.  Spectroscopic Detection of Type Ia Supernovae in the Sloan Digital Sky Survey , 2003, astro-ph/0310887.

[26]  S. E. Persson,et al.  The Peculiar SN 2005hk: Do Some Type Ia Supernovae Explode as Deflagrations? , 2006, astro-ph/0611295.

[27]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[28]  Pasadena,et al.  Reddening, Absorption, and Decline Rate Corrections for a Complete Sample of Type Ia Supernovae Leading to a Fully Corrected Hubble Diagram to v < 30,000 km s–1 , 2005, astro-ph/0501664.

[29]  J. Neill,et al.  Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies , 2006, astro-ph/0605455.

[30]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[31]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[32]  W. M. Wood-Vasey,et al.  Improved Cosmological Constraints from New, Old, and Combined Supernova Data Sets , 2008, 0804.4142.

[33]  Ulrich Hopp,et al.  FIRST-YEAR SPECTROSCOPY FOR THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY , 2008, 0802.3220.

[34]  R. Schommer,et al.  The Reddening-Free Decline Rate Versus Luminosity Relationship for Type Ia Supernovae , 1999, astro-ph/9907052.

[35]  Mamoru Doi,et al.  THE SLOAN DIGITAL SKY SURVEY-II: PHOTOMETRY AND SUPERNOVA IA LIGHT CURVES FROM THE 2005 DATA , 2008, 0908.4277.

[36]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[37]  S. Valenti,et al.  Supernova rates from the Southern inTermediate Redshift ESO Supernova Search (STRESS) , 2007, 0710.3763.

[38]  G. Tammann Supernova Statistics and Related Problems , 1982 .

[39]  J. Beaulieu,et al.  Type Ia supernova rate at a redshift of ~;0.1 , 2004, astro-ph/0405211.

[40]  S. Roweis,et al.  K-Corrections and Filter Transformations in the Ultraviolet, Optical, and Near-Infrared , 2006, astro-ph/0606170.

[41]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[42]  R. Thomas,et al.  A Comparative Study of the Absolute Magnitude Distributions of Supernovae , 2001, astro-ph/0112051.

[43]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[44]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[45]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[46]  R. L. Peterson,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[47]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[48]  G. Smadja,et al.  Nearby Supernova Factory Observations of SN 2005gj: Another Type Ia Supernova in a Massive Circumstellar Envelope , 2006, astro-ph/0606499.

[49]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[50]  R. Schommer,et al.  The Absolute Luminosities of the Calan/Tololo Type Ia Supernovae , 1996, astro-ph/9609059.

[51]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[52]  C. Heiles,et al.  H I, galaxy counts, and reddening: Variation in the gas-to-dust ratio, the extinction at high galactic latitudes, and a new method for determining galactic reddening , 1978 .

[53]  A. Filippenko TYPE IA SUPERNOVAE IN ELLIPTICAL AND SPIRAL GALAXIES: POSSIBLE DIFFERENCES IN PHOTOMETRIC HOMOGENEITY , 1989 .

[54]  D. Branch,et al.  Supernova Absolute-Magnitude Distributions , 1990 .