Tuning pH sensitivities of zinc phthalocyanines in ionic liquid modified matrices

[1]  V. Ahsen,et al.  Silver and proton driven fluorescent multiple-mode molecular logic gates employing phthalocyanines , 2010 .

[2]  C. Gong,et al.  Biodegradable self-assembled PEG–PCL–PEG micelles for hydrophobic honokiol delivery: I. Preparation and characterization , 2010, Nanotechnology.

[3]  V. Ahsen,et al.  Fluorescent Probes for Silver Detection Employing Phthalocyanines in Polymer Matrices , 2010 .

[4]  Ayşe Gül Gürek,et al.  Spectroscopic probing of acid–base properties and photocharacterization of phthalocyanines in organic solvents and polymer matrices , 2009 .

[5]  Kadriye Ertekin,et al.  Photophysical and optical oxygen sensing properties of tris(bipyridine)ruthenium(II) in ionic liquid modified sol–gel matrix , 2009 .

[6]  E. Akkaya,et al.  Thinking outside the silicon box: molecular and logic as an additional layer of selectivity in singlet oxygen generation for photodynamic therapy. , 2009, Journal of the American Chemical Society.

[7]  Kadriye Ertekin,et al.  Ratiometric sensing of CO2 in ionic liquid modified ethyl cellulose matrix. , 2008, Talanta.

[8]  Chang Yu-Chun,et al.  Near-Infrared Emission from Organic Light-Emitting Diodes Based on Copper Phthalocyanine with a Periodically Arranged Alq3:CuPc/DCM Multilayer Structure , 2008 .

[9]  Ingo Klimant,et al.  Optical Carbon Dioxide Sensors Based on Silicone-Encapsulated Room-Temperature Ionic Liquids , 2007 .

[10]  Wen Lu,et al.  Optical amine sensor based on metallophthalocyanine , 2007 .

[11]  R. P. Swatloski,et al.  Sensor technologies based on a cellulose supported platform. , 2007, Chemical communications.

[12]  U. Spichiger-Keller,et al.  Novel optical NO2-selective sensor based on phthalocyaninato-iron(II) incorporated into a nanostructured matrix , 2006 .

[13]  Michael J. Hall,et al.  Supramolecular photonic therapeutic agents. , 2005, Journal of the American Chemical Society.

[14]  E. Akkaya,et al.  Water-soluble green perylenediimide (PDI) dyes as potential sensitizers for photodynamic therapy. , 2005, Organic letters.

[15]  V. Ahsen,et al.  Synthesis, electrochemical, and spectroelectrochemical properties of tetrakis(13,17-dioxa nonacosane-15-sulphanyl) phthalocyaninato zinc(II) , 2005 .

[16]  Antoine Kahn,et al.  Impact of an interface dipole layer on molecular level alignment at an organic-conductor interface studied by ultraviolet photoemission spectroscopy , 2004 .

[17]  R. Boyle,et al.  Strategies for selective delivery of photodynamic sensitisers to biological targets , 2004 .

[18]  S. Capone,et al.  Spin-coated thin films of different metal phthalocyanines and porphyrin-phthalocyanine blend for optochemical sensors of volatile organic compounds , 2004, European Workshop on Optical Fibre Sensors.

[19]  P. Siciliano,et al.  UV-Vis absorption optosensing materials based on metallophthalocyanines thin films , 2004 .

[20]  H. Ogata,et al.  Effect of peripheral substitution on the electronic absorption and fluorescence spectra of metal-free and zinc phthalocyanines. , 2003, Chemistry.

[21]  D. A. Russell,et al.  Generation of Cytotoxic Singlet Oxygen via Phthalocyanine-Stabilized Gold Nanoparticles: A Potential Delivery Vehicle for Photodynamic Therapy , 2002 .

[22]  K. Asai,et al.  Fluorescence quenching oxygen sensor using an aluminum phthalocyanine–polystyrene film , 2000 .

[23]  Ayşe Gül Gürek,et al.  Synthesis and Liquid-crystalline Behaviour of Tetrakis- and Octakis(13, 17-dioxa nonacosane-15-sulfanyl)Phthalocyanines , 2000 .

[24]  Otto S. Wolfbeis,et al.  Optical sensor for the pH 10–13 range using a new support material , 1993 .

[25]  H. Pass,et al.  Photodynamic therapy in oncology: mechanisms and clinical use. , 1993, Journal of the National Cancer Institute.

[26]  E. P. Santos,et al.  Improving the phototoxicity of the zinc phthalocyanine by encapsulation in nanoparticles: preparation, characterization and phototherapy studies , 2010 .

[27]  Ilke Gürol,et al.  Synthesis of tetraalkylthio-substituted phthalocyanines and their complexation with AgI and PdII , 1994 .

[28]  A. G. Gürek,et al.  Octakis(alkylthio)-substituted phthalocyanines and their interactions with silver(I) and palladium(II) ions , 1994 .

[29]  A. Lever,et al.  Phthalocyanines : properties and applications , 1989 .

[30]  A. R. Williams,et al.  Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer , 1983 .