Thermodynamic Analysis of Separation Systems

Abstract Separation systems mainly involve interfacial mass and heat transfer as well as mixing. Distillation is a major separation system by means of heat supplied from a higher temperature level at the reboiler and rejected in the condenser at a lower temperature level. Therefore, it resembles a heat engine producing a separation work with a rather low efficiency. Lost work (energy) in separation systems is due to irreversible processes of heat, mass transfer, and mixing, and is directly related to entropy production according to the Gouy‐Stodola principle. In many separation systems of absorption, desorption, extraction, and membrane separation, the major irreversibility is the mass transfer process. In the last 30 years or so, thermodynamic analysis had become popular in evaluating the efficiency of separation systems. Thermodynamic analysis emphasizes the use of the second law of thermodynamics beside the first law, and may be applied through (i) the pinch analysis, (ii) the exergy analysis, and (iii) the equipartition principle. The pinch analysis aims a better integration of a process with its utilities. It is one of the mostly accepted and utilized methods in reducing energy cost. Exergy analysis describes the maximum available work when a form of energy is converted reversibly to a reference system in equilibrium with the environmental conditions; hence, it can relate the impact of energy utilization to the environmental degradation. On the other hand, the equipartition principle states that a separation operation would be optimum for a specified set of fluxes and a given transfer area when the thermodynamic driving forces are uniformly distributed in space and time. Thermodynamic analysis aims at identifying, quantifying, and minimizing irreversibilities in a separation system. This study presents an overview of the conventional approaches and the thermodynamic analysis to reduce energy cost, thermodynamic cost, and ecological cost in separation systems with the main emphasis on distillation operations. Some case studies of cost reduction based on the thermodynamic analysis are also included.

[1]  Karl Heinz Hoffmann,et al.  Comparison of entropy production rate minimization methods for binary diabatic distillation , 2002 .

[2]  T. O. Omideyi,et al.  The economics of heat pump assisted distillation systems—I. A design and economic model , 1984 .

[3]  Eric S. Fraga,et al.  Evaluation of hybrid optimization methods for the optimal design of heat integrated distillation sequences , 2003 .

[4]  Yuji Naka,et al.  Analysis of Heat Demand and Supply in Multicomponent Distillation Systems , 1994 .

[5]  Q. L. Chen,et al.  An exergoeconomic approach for retrofit of fractionating systems , 2002 .

[6]  G. Kaibel,et al.  Thermodynamics — guideline for the development of distillation column arrangements , 1990 .

[7]  Yaşar Demirel,et al.  Linear-nonequilibrium thermodynamics theoryfor coupled heat and mass transport , 2001 .

[8]  G. D. Koeijer,et al.  Entropy production and exergy loss in experimental distillation columns , 2003 .

[9]  Masaru Ishida,et al.  Application of energy-direction factor diagram for exergy analysis of a distillation column. , 1983 .

[10]  John R. Flower,et al.  Synthesis of heat exchanger networks: I. Systematic generation of energy optimal networks , 1978 .

[11]  G. F. Berry,et al.  The enhancement of the salt simulation and analysis code for first-and second-law analysis , 1989 .

[12]  J. A. Feliu,et al.  Saving energy in distillation towers by feed splitting , 2002 .

[13]  Y. El-Sayed,et al.  The energetics of desalination processes , 2001 .

[14]  Yaşar Demirel,et al.  Effects of concentration and temperature on the coupled heat and mass transport in liquid mixtures , 2002 .

[15]  Masaru Nakaiwa,et al.  Potential energy savings in ideal heat-integrated distillation column , 1998 .

[16]  Enrico Sciubba,et al.  Cost analysis of energy conversion systems via a novel resource-based quantifier , 2003 .

[17]  Antonio Valero,et al.  Structural theory as standard for thermoeconomics , 1999 .

[18]  S. Joshi,et al.  Assessment of potential energy savings in fluid separation technologies: technology review and recommended research areas. Final report , 1984 .

[19]  Ricardo Rivero Exergy simulation and optimization of adiabatic and diabatic binary distillation , 2001 .

[20]  Masaru Ishida,et al.  Graphic exergy analysis of processes in distillation column by energy‐utilization diagrams , 1996 .

[21]  F. Petlyuk Thermodynamically Optimal Method for Separating Multicomponent Mixtures , 1965 .

[22]  G. Kuiken Thermodynamics of Irreversible Processes: Applications to Diffusion and Rheology , 1994 .

[23]  Qinglin Chen,et al.  Exergoeconomic methodology for analysis and optimization of process systems , 2000 .

[24]  B. Andresen,et al.  Energy efficient distillation by optimal distribution of heating and cooling requirements , 2000 .

[25]  K. E. Porter,et al.  Finding the optimum sequence of distillation columns - an equation to replace the “rules of thumb” (heuristics) , 1991 .

[26]  Eckhart Blass,et al.  Evolutionary thermodynamic synthesis of zeotropic distillation sequences , 1992 .

[27]  Karl Heinz Hoffmann,et al.  Numerically optimized performance of diabatic distillation columns , 2001 .

[28]  Katalin M. Hangos,et al.  Thermodynamic approach to the structural stability of process plants , 1999 .

[29]  Lourdes García-Rodríguez,et al.  Exergy analysis of the SOL-14 plant (Plataforma Solar de Almería, Spain) , 2001 .

[30]  Jakob de Swaan Arons,et al.  Denbigh revisited: Reducing lost work in chemical processes , 1995 .

[31]  A. Doldersum,et al.  Exergy analysis proves viability of process modifications , 1998 .

[32]  S. Kjelstrup,et al.  Nonequilibrium molecular dynamics simulations of steady-state heat and mass transport in distillation , 1996 .

[33]  GMaskill Smith,et al.  The chemical engineer , 1946 .

[34]  P. A. Christodoulou Energy economy optimization in separation processes : Optimizing the separation to sucrose/water and non-sugars , 1996 .

[35]  Yuji Naka,et al.  AN INTERMEDIATE HEATING AND COOLING METHOD FOR A DISTILLATION COLUMN , 1980 .

[36]  Pingjing Yao,et al.  Application of total process energy-integration in retrofitting an ammonia plant , 2003 .

[37]  Peter Mizsey,et al.  Rigorous investigation of heat pump assisted distillation , 1995 .

[38]  Mamdouh A. Gadalla Retrofit Design of Heat Integrated Crude Oil Distillation Systems , 2003 .

[39]  Christodoulos A. Floudas,et al.  Synthesis of isothermal reactor—separator—recycle systems , 1991 .

[40]  R. Krishna,et al.  The Maxwell-Stefan approach to mass transfer , 1997 .

[41]  Miguel J. Bagajewicz,et al.  On the state space approach to mass/heat exchanger network design* , 1998 .

[42]  R. Del Rosal,et al.  PINCH ANALYSIS USED IN RETROFIT DESIGN OF DISTILLATION UNIT OF DISTILLATION UNITS , 1999 .

[43]  S. Ray,et al.  Irreversibility analysis of a sieve tray in a distillation column , 1996 .

[44]  Bengt Sundén,et al.  Optimizing a refinery using the pinch technology and the mind method , 1994 .

[45]  Mubarak Ebrahim,et al.  Pinch technology: an efficient tool for chemical-plant energy and capital-cost saving , 2000 .

[46]  Mark J. Andrecovich,et al.  An MILP formulation for heat‐integrated distillation sequence synthesis , 1985 .

[47]  Miguel J. Bagajewicz,et al.  Mass/heat‐exchange network representation of distillation networks , 1992 .

[48]  Oliver C. Mullins,et al.  Minimization of entropy production in distillation , 1984 .

[49]  Irreversibility analysis of a separation system using sieve tray distillation column , 1994 .

[50]  Diane Hildebrandt,et al.  Variables indicating the cost of vapour-liquid equilibrium separation processes , 1996 .

[51]  Michael A. Schultz,et al.  Reduce Costs with Dividing-Wall Columns , 2002 .

[52]  Hafskjold,et al.  Nonequilibrium Molecular Dynamics Simulations of Steady-State Heat and Mass Transport in Condensation. , 2000, Journal of colloid and interface science.

[53]  S. Bandyopadhyay Effect of feed on optimal thermodynamic performance of a distillation column , 2002 .

[54]  Adrian Finn,et al.  Rapid assessment of thermally coupled side columns , 1996 .

[55]  Associates,et al.  Separation technologies; An opportunity for energy savings , 1992 .

[56]  Robin Smith State of the art in process integration , 2000 .

[57]  Ibrahim Dincer,et al.  Exergy Analysis of Single- and Two-Stage Crude Oil Distillation Units , 2003 .

[58]  Y. Demirel,et al.  Nonequilibrium Thermodynamics in Engineering and Science , 2004 .

[59]  H. J. Van Der Kooi,et al.  Exergy analysis with a flowsheeting simulator-II. Application; synthesis gas production from natural gas , 1996 .

[60]  Stanislaw Sieniutycz,et al.  Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical and Biological Systems , 2003, Open Syst. Inf. Dyn..

[61]  P. Mizsey,et al.  Energy savings of integrated and coupled distillation systems , 1999 .

[62]  E. Hohmann Optimum networks for heat exchange , 1999 .

[63]  Masaru Ishida,et al.  Introduction of Individual Energy Level for Exergy Analysis of Process Systems with Multiple Components , 1993 .

[64]  Mikhail Sorin,et al.  Combined exergy and pinch approach to process analysis , 1997 .

[65]  Daniel Tondeur,et al.  Equipartition of entropy production. An optimality criterion for transfer and separation processes , 1987 .

[66]  Bodo Linnhoff,et al.  Distillation column targets , 1993 .

[67]  D. Mewes,et al.  DESIGN METHODOLOGY FOR THE OPTIMIZATION OF MEMBRANE SEPARATION PROPERTIES FOR HYBRID VAPOR PERMEATION-DISTILLATION PROCESSES , 2001 .

[68]  Z. Fonyo,et al.  Enhancement of process integration by heat pumping , 1996 .

[69]  J. de Graauw,et al.  Internal heat integration – the key to an energy‐conserving distillation column , 2003 .

[70]  Pyeong Soon Yong,et al.  Exergy Analysis of Cryogenic Air Separation Process for Generating Nitrogen , 1916 .

[71]  Roger Josef Zemp,et al.  Driving force distribution and exergy loss in the thermodynamic analysis of distillation columns , 1997 .

[72]  T. P. Ognisty Analyze distillation columns with thermodynamics , 1995 .

[73]  Arief Budiman,et al.  Three-dimensional graphical exergy analysis of a distillation column , 1996 .

[74]  B. Linnhoff,et al.  Heat integration of distillation columns into overall processes , 1983 .

[75]  Jixin Qian,et al.  Modeling, Control, and Optimization of Ideal Internal Thermally Coupled Distillation Columns , 2000 .

[76]  S. Kjelstrup,et al.  Transport equations for distillation of ethanol and water from the entropy production rate , 2003 .

[77]  Lee R. Lynd,et al.  Distillation with intermediate heat pumps and optimal sidestream return , 1986 .

[78]  Megan Jobson,et al.  Increase capacity and decrease energy for existing refinery distillation columns , 2003 .

[79]  Robert U. Ayres,et al.  Eco-thermodynamics: economics and the second law , 1998 .

[80]  H. Kooi,et al.  Exergy analysis with a flowsheeting simulator—I. Theory; calculating exergies of material streams , 1996 .

[81]  Kristian M. Lien,et al.  Analysis of Entropy Production Rates for Design of Distillation Columns , 1995 .

[82]  D. C. Freshwater,et al.  Reducing energy requirements in unit operations , 1976 .

[83]  Ljubica Matijašević,et al.  Energy recovery by pinch technology , 2002 .

[85]  Thomas Kuen,et al.  Minimum energy demand for distillations with distributed components and side-product withdrawals , 1994 .

[86]  Kristian M. Lien,et al.  DIABATIC COLUMN OPTIMIZATION COMPARED TO ISOFORCE COLUMNS , 1997 .

[87]  John R. Flower,et al.  Synthesis of heat exchanger networks: II. Evolutionary generation of networks with various criteria of optimality , 1978 .

[88]  Arturo Jiménez,et al.  An area targeting algorithm for the synthesis of heat exchanger networks , 2004 .

[89]  Jacques De Ruyck,et al.  Entropy generation reduction through chemical pinch analysis , 2003 .

[90]  M. J. Moran,et al.  Thermal design and optimization , 1995 .

[91]  Ingela Niklasson Björn,et al.  Simulation and experimental study of intermediate heat exchange in a sieve tray distillation column , 2002 .

[92]  A. M. Tsirlin,et al.  Finite-Time Thermodynamics: Limiting Performance of Rectification and Minimal Entropy Production in Mass Transfer , 1994 .

[93]  J. A. Wilson,et al.  GETTING THE MAXIMUM BENEFIT FROM A SIDE-REBOILER , 1999 .

[94]  Masaru Ishida,et al.  Application of energy-utilization diagram for graphic exergy analysis of multicomponent distillation columns , 1992 .

[95]  Miguel J. Bagajewicz Energy savings horizons for the retrofit of chemical processes. Application to crude fractionation units , 1998 .

[96]  Bodo Linnhoff,et al.  Overall design of low temperature processes , 1994 .

[97]  S. Kjelstrup,et al.  Positioning heat exchangers in binary tray distillation using isoforce operation , 2002 .

[98]  Z. Fonyo,et al.  THERMODYNAMIC ANALYSIS OF RECTIFICATION - 1. REVERSIBLE MODEL OF RECTIFICATION. , 1974 .

[99]  A. W. Sloley,et al.  Consider modeling tools to revamp existing process units : Process optimization : A special report , 2000 .

[100]  Rene Cornelissen,et al.  Exergy analysis of cryogenic air separation , 1998 .

[101]  S. Kolev Coupled Diffusion of Multiple Ionic Species in Ion-Exchange Membranes with Fixed Ionic Groups , 2003 .

[102]  E. Blass,et al.  Minimum reflux calculations for nonideal mixtures using the reversible distillation model , 1991 .

[103]  Kunio Arai,et al.  Energy analysis of supercritical carbon dioxide extraction processes , 1999 .

[104]  T. O. Omideyi,et al.  The economics of heat pump assisted distillation systems—II. Analysis of ethanol-water mixtures , 1984 .

[105]  Ricardo Rivero,et al.  Exergy analysis of distillation processes , 1996 .

[106]  Ricardo Rivero Application of the exergy concept in the petroleum refining and petrochemical industry , 2002 .

[107]  Antonio Ficarella,et al.  Energy conservation in alcohol distillery with the application of pinch technology , 1999 .

[108]  D. Hildebrandt,et al.  Binary distillation re-visited using the attainable region theory , 2000 .