An Optimal Control Problem in Polyconvex Hyperelasticity

We consider an implant shape design problem arising in the context of facial surgery. The aim is to find the shape of an implant that deforms the soft tissue of the skin in a desired way. Assuming sufficient regularity, we introduce a reformulation as an optimal control problem where the control acts as a boundary force. The solution of that problem can be used to recover the implant shape from the optimal state. For a simplified problem, in the case where the state can be modeled as a minimizer of a polyconvex hyperelastic energy functional, we show existence of optimal solutions and derive---on a formal level---first order optimality conditions. Finally, preliminary numerical results are presented for the original optimal control formulation.

[1]  C. B. Morrey Multiple Integrals in the Calculus of Variations , 1966 .

[2]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[3]  I. N. Sneddon,et al.  Finite Deformation of an Elastic Solid , 1954 .

[4]  P. Ciarlet,et al.  Mathematical elasticity, volume I: Three-dimensional elasticity , 1989 .

[5]  Jay R. Walton,et al.  The Convexity Properties of a Class of Constitutive Models for Biological Soft Issues , 2002 .

[6]  P. G. Ciarlet,et al.  An Introduction to Differential Geometry with Applications to Elasticity , 2006 .

[7]  Lars Lubkoll Optimal Control in Implant Shape Design , 2011 .

[8]  Evgeny Gladilin,et al.  Implant shape optimization using reverse FEA , 2005, SPIE Medical Imaging.

[9]  Michael Vogelius An Analysis of the p-Version of the Finite Element Method for Nearly Incompressible Materials Uniformly Valid, Optimal Error Estimates , 1983 .

[10]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[11]  Owe Axelsson,et al.  On a robust and scalable linear elasticity solver based on a saddle point formulation , 1999 .

[12]  H. Bufler,et al.  Pressure Loaded Structures under Large Deformations , 1984 .

[13]  Sebastian Götschel,et al.  Solving Optimal Control Problems with the Kaskade 7 Finite Element Toolbox , 2012 .

[14]  J. K. Knowles,et al.  On the failure of ellipticity of the equations for finite elastostatic plane strain , 1976 .

[15]  John E. Renaud,et al.  Optimum design of an interbody implant for lumbar spine fixation , 2005, Adv. Eng. Softw..

[16]  M. Boyce,et al.  A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials , 1993 .

[17]  Anton Schiela,et al.  Barrier Methods for Optimal Control Problems with State Constraints , 2009, SIAM J. Optim..

[18]  R. Rivlin Large elastic deformations of isotropic materials IV. further developments of the general theory , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[19]  John M. Ball,et al.  Strict convexity, strong ellipticity, and regularity in the calculus of variations , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[21]  R. Ogden,et al.  Mechanics of biological tissue , 2006 .

[22]  V. Sverák,et al.  Rank-one convexity does not imply quasiconvexity , 1992, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  G. Holzapfel,et al.  A polyconvex framework for soft biological tissues. Adjustment to experimental data , 2006 .

[24]  Young-Ju Lee,et al.  Exact Artificial Boundary Conditions for Continuum and Discrete Elasticity , 2006, SIAM J. Appl. Math..

[25]  Alexander Mielke Necessary and sufficient conditions for polyconvexity of isotropic functions ∗ , .

[26]  Yohan Payan,et al.  Patient specific finite element model of the face soft tissues for computer-assisted maxillofacial surgery , 2003, Medical Image Anal..

[27]  Peter Deuflhard,et al.  Affine conjugate adaptive Newton methods for nonlinear elastomechanics , 2007, Optim. Methods Softw..

[28]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[29]  R. Ogden Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  G. Holzapfel SECTION 10.11 – Biomechanics of Soft Tissue , 2001 .

[31]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[32]  Mikhail Itskov,et al.  A polyconvex hyperelastic model for fiber-reinforced materials in application to soft tissues , 2007 .

[33]  D. Balzani Polyconvex anisotropic energies and modeling of damage applied to arterial walls , 2006 .

[34]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[35]  T. R. Hughes,et al.  Mathematical foundations of elasticity , 1982 .

[36]  J. Ball Convexity conditions and existence theorems in nonlinear elasticity , 1976 .

[37]  M. Mooney A Theory of Large Elastic Deformation , 1940 .

[38]  Dietrich Braess,et al.  Finite Elemente - Theorie, schnelle Löser und Anwendungen in der Elastizitätstheorie , 1992 .

[39]  David J. Steigmann,et al.  Frame-Invariant Polyconvex Strain-Energy Functions for Some Anisotropic Solids , 2003 .

[40]  Sophia Mã ¶ ller,et al.  Biomechanics — Mechanical properties of living tissue , 1982 .

[41]  B. Wohlmuth,et al.  Locking-free finite element methods for linear and nonlinear elasticity in 2D and 3D , 2007 .

[42]  Peter Deuflhard,et al.  Newton Methods for Nonlinear Problems , 2004 .

[43]  Li Shi,et al.  Shape optimization of dental implants. , 2007, The International journal of oral & maxillofacial implants.

[44]  João Folgado,et al.  Bone Implant Design Using Optimization Methods , 2010 .

[45]  Stefan Hartmann,et al.  Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility , 2003 .

[46]  James K. Knowles,et al.  On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics , 1978 .

[47]  R. Rivlin Large Elastic Deformations of Isotropic Materials , 1997 .

[48]  J. Ball Some Open Problems in Elasticity , 2002 .