The JCMT Legacy Survey of the Gould Belt: mapping 13CO and C18O in Orion A

The Gould Belt Legacy Survey will map star-forming regions within 500 pc, using Heterodyne Array Receiver Programme (HARP), Submillimetre Common-User Bolometer Array 2 (SCUBA-2) and Polarimeter 2 (POL-2) on the James Clerk Maxwell Telescope (JCMT). This paper describes HARP observations of the J= 3 → 2 transitions of 13CO and C18O towards Orion A. The 15 arcsec resolution observations cover 5 pc of the Orion filament, including OMC 1 (including BN–KL and Orion bar), OMC 2/3 and OMC 4, and allow a comparative study of the molecular gas properties throughout the star-forming cloud. The filament shows a velocity gradient of ∼1 km s−1 pc−1 between OMC 1, 2 and 3, and high-velocity emission is detected in both isotopologues. The Orion Nebula and Bar have the largest masses and linewidths, and dominate the mass and energetics of the high-velocity material. Compact, spatially resolved emission from CH3CN, 13CH3OH, SO, HCOOCH3, CH3CHO and CH3OCHO is detected towards the Orion Hot Core. The cloud is warm, with a median excitation temperature of ∼24 K; the Orion Bar has the highest excitation temperature gas, at >80 K. The C18O excitation temperature correlates well with the dust temperature (to within 40 per cent). The C18O emission is optically thin, and the 13CO emission is marginally optically thick; despite its high mass, OMC 1 shows the lowest opacities. A virial analysis indicates that Orion A is too massive for thermal or turbulent support, but is consistent with a model of a filamentary cloud that is threaded by helical magnetic fields. The variation of physical conditions across the cloud is reflected in the physical characteristics of the dust cores. We find similar core properties between starless and protostellar cores, but variations in core properties with position in the filament. The OMC 1 cores have the highest velocity dispersions and masses, followed by OMC 2/3 and OMC 4. The differing fragmentation of these cores may explain why OMC 1 has formed clusters of high-mass stars, whereas OMC 4 produces fewer, predominantly low-mass stars.

[1]  J. M. Hollis,et al.  Millimeter- and Submillimeter-Wave Surveys of Orion A Emission Lines in the Ranges 200.7--202.3, 203.7--205.3, and 330--360 GHz , 1989 .

[2]  D. Lis,et al.  A Line Survey of Orion-KL from 607 to 725 GHz , 2001 .

[3]  M. Burton,et al.  Explosive ejection of matter associated with star formation in the Orion nebula , 1993, Nature.

[4]  E. Serabyn,et al.  Fourier Transform Spectroscopy of the Orion Molecular Cloud Core , 1995 .

[5]  E. Ostriker,et al.  Theory of Star Formation , 2007, 0707.3514.

[6]  T. Jenness,et al.  HARP/ACSIS: a submillimetre spectral imaging system on the James Clerk Maxwell Telescope , 2009, 0907.3610.

[7]  G. Fuller,et al.  The JCMT Legacy Survey of the Gould Belt: a first look at Serpens with HARP: GBS: first look at Serpens , 2010, 1006.0891.

[8]  E. Bergin,et al.  Density Structure in Giant Molecular Cloud Cores , 1996 .

[9]  Y. Sekimoto,et al.  N2H+ and HC3N Observations of the Orion A Cloud , 2008, 0804.0111.

[10]  H. Suto,et al.  [Fe II] 1.257 μm and He I 1.083 μm Emission in the Central Region of the Orion Nebula: H II Region, HH Flows, Jets, and Proplyds , 2002 .

[11]  E. Bergin,et al.  A DIRECT MEASUREMENT OF THE TOTAL GAS COLUMN DENSITY IN ORION KL , 2011 .

[12]  N. Evans,et al.  OBSERVATIONAL CONSTRAINTS ON SUBMILLIMETER DUST OPACITY , 2010, 1012.3488.

[13]  E. F. Ladd,et al.  Star formation in Perseus - Clusters, filaments and the conditions for star formation , 2005 .

[14]  L. Ziurys,et al.  The spectrum of Orion-KL at 2 millimeters (150-160 GHz). , 1993, The Astrophysical journal. Supplement series.

[15]  T G Phillips,et al.  A Line Survey of Orion KL from 325 to 360 GHz , 1997, The Astrophysical journal. Supplement series.

[16]  P. Bernath,et al.  A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite: I. The observational data , 2007, 0910.1825.

[17]  J. Black,et al.  The photodissociation and chemistry of interstellar CO , 1988 .

[18]  Jonathan P. Williams,et al.  High-Resolution Imaging of CO Outflows in OMC-2 and OMC-3 , 2003, astro-ph/0303443.

[19]  D. Johnstone,et al.  “STARLESS” SUPER-JEANS CORES IN FOUR GOULD BELT CLOUDS , 2010, 1006.1924.

[20]  J. Bally,et al.  EXPLOSIVE OUTFLOWS POWERED BY THE DECAY OF NON-HIERARCHICAL MULTIPLE SYSTEMS OF MASSIVE STARS: ORION BN/KL , 2010, 1011.5512.

[21]  M. Wright,et al.  High-Resolution CO Observations of the Molecular Outflow in the Orion IRc2 Region , 1996 .

[22]  C. Lee,et al.  A Spectral Line Survey from 138.3 to 150.7 GHz toward Orion-KL , 2000, astro-ph/0011362.

[23]  W. Danchi,et al.  The distribution of molecules in the core of OMC-1 , 1995 .

[24]  A. Whitworth,et al.  The James Clerk Maxwell Telescope Legacy Survey of Nearby Star‐forming Regions in the Gould Belt , 2007, 0707.0169.

[25]  L. Greenhill,et al.  A 42.3–43.6 GHz SPECTRAL SURVEY OF ORION BN/KL: FIRST DETECTION OF THE v = 0 J = 1–0 LINE FROM THE ISOTOPOLOGUES 29SiO AND 30SiO , 2008, 0810.1140.

[26]  Geoffrey A. Blake,et al.  Molecular line survey of Orion A from 215 to 247 GHz , 1985 .

[27]  T. Wilson Isotopes in the interstellar medium and circumstellar envelopes , 1999 .

[28]  D. Ward-Thompson,et al.  A SCUBA survey of Orion -the low-mass end of the core mass function , 2006, astro-ph/0611164.

[29]  M. Barlow,et al.  A far-infrared molecular and atomic line survey of the Orion KL region , 2006, astro-ph/0605410.

[30]  F. Adams,et al.  Dense Cores Mapped in Ammonia: A Database , 1999 .

[31]  D. Ward-Thompson,et al.  The JCMT Legacy Survey of the Gould Belt: a first look at Orion B with HARP , 2009, 0908.4162.

[32]  J. Bally,et al.  JCMT/SCUBA Submillimeter Wavelength Imaging of the Integral-shaped Filament in Orion , 1998 .

[33]  Thierry Montmerle,et al.  From darkness to light : origin and evolution of young stellar clusters : proceedings of a meeting held in Cargèse, Corsica, France, 3-8 April 2000 , 2001 .

[34]  E. Bergin,et al.  Carbon Monoxide and Dust Column Densities: The Dust-to-Gas Ratio and Structure of Three Giant Molecular Cloud Cores , 1997 .

[35]  T. Henning,et al.  Dust opacities in dense regions , 1995 .

[36]  S. Sakai,et al.  SiO Maser Observations toward Orion-KL with VERA , 2008 .

[37]  E. Serabyn,et al.  350 Micron Continuum Imaging of the Orion A Molecular Cloud with the Submillimeter High Angular Resolution Camera , 1998 .

[38]  W. J. Conover,et al.  Practical Nonparametric Statistics , 1972 .

[39]  B. L. Ulich,et al.  Recommendations for calibration of millimeter-wavelength spectral line data. , 1981 .

[40]  A. Kawamura,et al.  A C18O Survey of Dense Cloud Cores in Taurus: Star Formation , 1998 .

[41]  Helical fields and filamentary molecular clouds — I , 1999, astro-ph/9901096.

[42]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[43]  Jonathan P. Williams,et al.  The Density Structure in the Rosette Molecular Cloud: Signposts of Evolution , 1995 .

[44]  J. Buckle,et al.  A submillimetre survey of the kinematics of the Perseus molecular cloud – I. Data , 2009, 0909.0707.

[45]  R. Linke,et al.  Dense cores in dark clouds. I. CO observations and column densities of high-extinction regions , 1983 .

[46]  M. Reid,et al.  Line Imaging of Orion KL at 865 μm with the Submillimeter Array , 2005, astro-ph/0506603.

[47]  G. Fuller,et al.  C18O and C17O Observations of Embedded Young Stars in the Taurus Molecular Cloud. I. Integrated Intensities and Column Densities , 1998 .

[48]  A. Goodman,et al.  CO Isotopologues in the Perseus Molecular Cloud Complex: the X-factor and Regional Variations , 2008, 0802.0708.

[49]  G. White,et al.  Images of atomic carbon in the interstellar medium , 1991, Nature.

[50]  Douglas Scott,et al.  SCUBA-2: a 10,000-pixel submillimeter camera for the James Clerk Maxwell Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[51]  D. Lis,et al.  Astrochemistry : recent successes and current challenges : proceedings of the 231st Symposium of the International Astronomical Union held in Pacific Grove, California, USA August 29 - September 2, 2005 , 2005 .

[52]  R. Larson Turbulence and star formation in molecular clouds , 1980 .

[53]  C. Masson,et al.  THE ROTATIONAL EMISSION-LINE SPECTRUM OF ORION A BETWEEN 247 AND 263 GHZ , 1986 .

[54]  J. Stutzki,et al.  The Orion Molecular Cloud and Star-Forming Region , 1988 .

[55]  J. Ostriker On the Oscillations and the Stability of a Homogeneous Compressible Cylinder. , 1964 .

[56]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[57]  P. Ho,et al.  Large-Scale Structure, Kinematics, and Heating of the Orion Ridge. I. VLA NH3 (1, 1) and (2, 2) Multifield Mosaics , 1998 .

[58]  D. Padgett,et al.  THE MASS DISTRIBUTION OF STARLESS AND PROTOSTELLAR CORES IN GOULD BELT CLOUDS , 2010, 1001.0978.

[59]  A. Goodman,et al.  Coherence in Dense Cores. II. The Transition to Coherence , 1998 .

[60]  N. Scoville,et al.  The nature of the broad molecular line emission at the Kleinmann-Low nebula. , 1976 .

[61]  B. Turner A molecular line survey of Sagittarius B2 and Orion-KL from 70 to 115 GHz. I - The observational data , 1989 .

[62]  B. Reipurth Handbook of Star Forming Regions, Volume I: The Northern Sky , 2008 .

[63]  J. Bally,et al.  A Multiwavelength Study of Outflows in OMC-2/3 , 1998 .

[64]  R. Wilson,et al.  Filamentary structure in the Orion molecular cloud , 1986 .

[65]  Todd R. Hunter,et al.  Ground-based terahertz CO spectroscopy towards Orion , 2001 .

[66]  G. Chin,et al.  The molecular complexes in Orion , 1977 .

[67]  C. Brunt,et al.  The Universality of Turbulence in Galactic Molecular Clouds , 2004, astro-ph/0409420.

[68]  J. Bally,et al.  Dust Filaments and Star Formation in OMC-2 and OMC-3 , 1997 .

[69]  Shocked H2 and Fe+ dynamics in the Orion bullets , 1999, astro-ph/9903022.

[70]  P. Ade,et al.  90 GHz AND 150 GHz OBSERVATIONS OF THE ORION M42 REGION. A SUBMILLIMETER TO RADIO ANALYSIS , 2009, 0907.1300.

[71]  P. Bernath,et al.  A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite II. Data analysis , 2007, 0910.1815.

[72]  M. Mccaughrean,et al.  An unbiased H 2 survey for protostellar jets in Orion A ? II. The infrared survey data , 2002 .

[73]  K. Menten,et al.  The distance to the Orion Nebula , 2007, 0709.0485.

[74]  M. Morris,et al.  The large system of molecular clouds in Orion and Monoceros , 1986 .

[75]  F. Motte,et al.  A Molecular Line Survey of Orion KL in the 350 Micron Band , 2005 .

[76]  D. Johnstone,et al.  Astrochemistry of sub-millimeter sources in Orion. Studying the variations of molecular tracers with changing physical conditions , 2003, astro-ph/0310166.

[77]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[78]  Geoffrey A. Blake,et al.  Molecular abundances in OMC-1 - the chemical composition of interstellar molecular clouds and the influence of massive star formation , 1987 .

[79]  I. Gatley,et al.  A spectroscopic study of the Dr 21 outflow source. III - The CO line emission , 1991 .