Full-state quantum circuit simulation by using data compression

Quantum circuit simulations are critical for evaluating quantum algorithms and machines. However, the number of state amplitudes required for full simulation increases exponentially with the number of qubits. In this study, we leverage data compression to reduce memory requirements, trading computation time and fidelity for memory space. Specifically, we develop a hybrid solution by combining the lossless compression and our tailored lossy compression method with adaptive error bounds at each timestep of the simulation. Our approach optimizes for compression speed and makes sure that errors due to lossy compression are uncorrelated, an important property for comparing simulation output with physical machines. Experiments show that our approach reduces the memory requirement of simulating the 61-qubit Grover's search algorithm from 32 exabytes to 768 terabytes of memory on Argonne's Theta supercomputer using 4,096 nodes. The results suggest that our techniques can increase the simulation size by 2~16 qubits for general quantum circuits.

[1]  Franck Cappello,et al.  Significantly Improving Lossy Compression for Scientific Data Sets Based on Multidimensional Prediction and Error-Controlled Quantization , 2017, 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[2]  Robert Wille,et al.  Matrix-Vector vs. Matrix-Matrix Multiplication: Potential in DD-based Simulation of Quantum Computations , 2019, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[3]  Avinash Sodani,et al.  Knights landing (KNL): 2nd Generation Intel® Xeon Phi processor , 2015, 2015 IEEE Hot Chips 27 Symposium (HCS).

[4]  David Gosset,et al.  Improved Classical Simulation of Quantum Circuits Dominated by Clifford Gates. , 2016, Physical review letters.

[5]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[6]  Franck Cappello,et al.  An Efficient Transformation Scheme for Lossy Data Compression with Point-Wise Relative Error Bound , 2018, 2018 IEEE International Conference on Cluster Computing (CLUSTER).

[7]  Franck Cappello,et al.  Fast Error-Bounded Lossy HPC Data Compression with SZ , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[8]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[9]  Tong Liu,et al.  Understanding and Modeling Lossy Compression Schemes on HPC Scientific Data , 2018, 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[10]  V. Morozov,et al.  Early Evaluation of the Cray XC 40 Xeon Phi System ‘ Theta ’ at Argonne , 2017 .

[11]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[12]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[13]  D. Gottesman The Heisenberg Representation of Quantum Computers , 1998, quant-ph/9807006.

[14]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[15]  John A. Gunnels,et al.  Pareto-Efficient Quantum Circuit Simulation Using Tensor Contraction Deferral , 2017 .

[16]  Richard Jozsa,et al.  Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..

[17]  Gilles Brassard,et al.  Teleportation as a quantum computation , 1998 .

[18]  Leslie Ann Goldberg,et al.  The Complexity of Approximating complex-valued Ising and Tutte partition functions , 2014, computational complexity.

[19]  Margaret Martonosi,et al.  Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs , 2019, 2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture (ISCA).

[20]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[21]  Alán Aspuru-Guzik,et al.  qHiPSTER: The Quantum High Performance Software Testing Environment , 2016, ArXiv.

[22]  P. Mininni,et al.  Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation , 2007 .

[23]  Igor L. Markov,et al.  Simulating Quantum Computation by Contracting Tensor Networks , 2008, SIAM J. Comput..

[24]  Xia Yang,et al.  64-qubit quantum circuit simulation. , 2018, Science bulletin.

[25]  Jack Dongarra,et al.  17th Edition of TOP500 List of World's Fastest SupercomputersReseased , 2001 .

[26]  Igor L. Markov,et al.  Quantum Supremacy Is Both Closer and Farther than It Appears , 2018, ArXiv.

[27]  T. O'Brien,et al.  Low-cost error mitigation by symmetry verification , 2018, Physical Review A.

[28]  Alexander McCaskey,et al.  Validating quantum-classical programming models with tensor network simulations , 2018, PloS one.

[29]  H. Neven,et al.  Characterizing quantum supremacy in near-term devices , 2016, Nature Physics.

[30]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[31]  J. Biamonte,et al.  Tensor Networks in a Nutshell , 2017, 1708.00006.

[32]  Ian H. Witten,et al.  Arithmetic coding for data compression , 1987, CACM.

[33]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[34]  Yaoyun Shi,et al.  Classical Simulation of Intermediate-Size Quantum Circuits , 2018, 1805.01450.

[35]  Gilles Brassard New Trends in Quantum Computing , 1996, STACS.

[36]  Margaret Martonosi,et al.  ScaffCC: Scalable compilation and analysis of quantum programs , 2015, Parallel Comput..

[37]  Franck Cappello,et al.  Error-Controlled Lossy Compression Optimized for High Compression Ratios of Scientific Datasets , 2018, 2018 IEEE International Conference on Big Data (Big Data).

[38]  Christina Freytag,et al.  Using Mpi Portable Parallel Programming With The Message Passing Interface , 2016 .

[39]  Robert Latham,et al.  ISABELA for effective in situ compression of scientific data , 2013, Concurr. Comput. Pract. Exp..

[40]  Robert Wille,et al.  Accuracy and Compactness in Decision Diagrams for Quantum Computation , 2019, 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[41]  Satoshi Matsuoka,et al.  Exploration of Lossy Compression for Application-Level Checkpoint/Restart , 2015, 2015 IEEE International Parallel and Distributed Processing Symposium.

[42]  Travis S. Humble,et al.  Establishing the quantum supremacy frontier with a 281 Pflop/s simulation , 2019, Quantum Science and Technology.

[43]  John A. Gunnels,et al.  Breaking the 49-Qubit Barrier in the Simulation of Quantum Circuits , 2017, 1710.05867.

[44]  Jarek Rossignac,et al.  Out‐of‐core compression and decompression of large n‐dimensional scalar fields , 2003, Comput. Graph. Forum.

[45]  H. Neven,et al.  Simulation of low-depth quantum circuits as complex undirected graphical models , 2017, 1712.05384.

[46]  Martin Burtscher,et al.  FPC: A High-Speed Compressor for Double-Precision Floating-Point Data , 2009, IEEE Transactions on Computers.

[47]  Abraham Lempel,et al.  A universal algorithm for sequential data compression , 1977, IEEE Trans. Inf. Theory.

[48]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[49]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[50]  Matthew McKague,et al.  Self-testing in parallel with CHSH , 2016, 1609.09584.

[51]  Martin Isenburg,et al.  Fast and Efficient Compression of Floating-Point Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[52]  Robert Wille,et al.  Advanced Simulation of Quantum Computations , 2017, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[53]  J. Gambetta,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2018, Nature.

[54]  Peter Deutsch,et al.  GZIP file format specification version 4.3 , 1996, RFC.

[55]  M. A. Rol,et al.  Experimental error mitigation via symmetry verification in a variational quantum eigensolver , 2019, Physical Review A.

[56]  Jim Jeffers,et al.  Chapter 10 – Linux on the Coprocessor , 2013 .

[57]  Thomas Lippert,et al.  Massively parallel quantum computer simulator , 2006, Comput. Phys. Commun..

[58]  Kristan Temme,et al.  Error mitigation extends the computational reach of a noisy quantum processor , 2019, Nature.

[59]  James Reinders,et al.  Intel Xeon Phi Coprocessor High Performance Programming , 2013 .

[60]  Jeff Nichols,et al.  Announcing Supercomputer Summit , 2016 .

[61]  Thomas Häner,et al.  0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit , 2017, SC17: International Conference for High Performance Computing, Networking, Storage and Analysis.

[62]  Peter Lindstrom,et al.  Fixed-Rate Compressed Floating-Point Arrays , 2014, IEEE Transactions on Visualization and Computer Graphics.

[63]  Franck Cappello,et al.  Accelerating Relative-error Bounded Lossy Compression for HPC datasets with Precomputation-Based Mechanisms , 2019, 2019 35th Symposium on Mass Storage Systems and Technologies (MSST).

[64]  Guangwen Yang,et al.  Quantum Supremacy Circuit Simulation on Sunway TaihuLight , 2018, IEEE Transactions on Parallel and Distributed Systems.

[65]  S. Benjamin,et al.  Practical Quantum Error Mitigation for Near-Future Applications , 2017, Physical Review X.

[66]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[67]  David A. Huffman,et al.  A method for the construction of minimum-redundancy codes , 1952, Proceedings of the IRE.

[68]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[69]  Scott Aaronson,et al.  Complexity-Theoretic Foundations of Quantum Supremacy Experiments , 2016, CCC.

[70]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.