Perception-Oriented Picking of Structures in Direct Volumetric

Radiologists from all application areas are trained to read slice-based visualizations of 3D medical image data. Despite the numerous examples of sophisticated three-dimensional renderings, especially all variants of direct volume rendering, such methods are often considered not very useful by radiologists who prefer slice-based visualization. Just recently there have been attempts to bridge this gap between 2D and 3D renderings. These attempts include specialized techniques for volume picking that result in repositioning slices. In this paper, we present a new volume picking technique that, in contrast to previous work, does not require pre-segmented data or metadata. The positions picked by our method are solely based on the data itself, the transfer function and, most importantly, on the way the volumetric rendering is perceived by viewers. To demonstrate the usefulness of the proposed method we apply it for automatically repositioning slices in an abdominal MRI scan, a data set from a flow simulation and a number of other volumetric scalar fields. Furthermore we discuss how the method can be implemented in combination with various different volumetric rendering techniques.

[1]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for isosurface rendering , 1998 .

[2]  Enrico Gobbetti,et al.  Interactive virtual angioscopy , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[3]  Ming-Yuen Chan,et al.  Visibility-aware direct volume rendering , 2011 .

[4]  Rüdiger Westermann,et al.  Acceleration techniques for GPU-based volume rendering , 2003, IEEE Visualization, 2003. VIS 2003..

[5]  W. D. Bidgood,et al.  Introduction to the ACR-NEMA DICOM standard. , 1992, Radiographics : a review publication of the Radiological Society of North America, Inc.

[6]  Stefan Bruckner,et al.  LiveSync: Deformed Viewing Spheres for Knowledge-Based Navigation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[7]  Markus Hadwiger,et al.  Game Developer's Guide to Volume Graphics , 2006 .

[8]  William J. Schroeder,et al.  The Visualization Toolkit , 2005, The Visualization Handbook.

[9]  Helen Hong,et al.  Summation or Axial Slab Average Intensity Projection of Abdominal Thin-section CT Datasets: Can They Substitute for the Primary Reconstruction from Raw Projection Data? , 2007, Journal of Digital Imaging.

[10]  Kwan-Liu Ma,et al.  Visibility-driven transfer functions , 2009, 2009 IEEE Pacific Visualization Symposium.

[11]  Markus Hadwiger,et al.  Real-time volume graphics , 2006, Eurographics.

[12]  James T. Enns,et al.  Attention and Visual Memory in Visualization and Computer Graphics , 2012, IEEE Transactions on Visualization and Computer Graphics.

[13]  Stefan Bruckner,et al.  LiveSync++: enhancements of an interaction metaphor , 2008, Graphics Interface.

[14]  Peter-Pike J. Sloan,et al.  Interactive ray tracing for isosurface rendering , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[15]  Ming-Yuen Chan,et al.  Visibility-Aware Direct Volume Rendering , 2011, Journal of Computer Science and Technology.

[16]  Timo Ropinski,et al.  Voreen: A Rapid-Prototyping Environment for Ray-Casting-Based Volume Visualizations , 2009, IEEE Computer Graphics and Applications.

[17]  Bernhard Preim,et al.  The Medical Exploration Toolkit – an efficient support for visual computing in surgical planning and training , 2008 .

[18]  Stefan Bruckner,et al.  Contextual picking of volumetric structures , 2009, 2009 IEEE Pacific Visualization Symposium.

[19]  Andreas Kolb,et al.  Opacity Peeling for Direct Volume Rendering , 2006, Comput. Graph. Forum.

[20]  David S. Ebert,et al.  Instant Volumetric Understanding with Order‐Independent Volume Rendering , 2004, Comput. Graph. Forum.

[21]  Wei Chen,et al.  Perception-Based Transparency Optimization for Direct Volume Rendering , 2009, IEEE Transactions on Visualization and Computer Graphics.

[22]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[23]  Han-Wei Shen,et al.  View selection for volume rendering , 2005, VIS 05. IEEE Visualization, 2005..

[24]  Stefan Bruckner,et al.  BrainGazer - Visual Queries for Neurobiology Research , 2009, IEEE Transactions on Visualization and Computer Graphics.

[25]  Klaus D. Tönnies,et al.  Volume rendering for interactive 3D segmentation , 1997, Medical Imaging.

[26]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.

[27]  Hans-Christian Hege,et al.  amira: A Highly Interactive System for Visual Data Analysis , 2005, The Visualization Handbook.

[28]  Amy Henderson Squilacote The Paraview Guide , 2008 .

[29]  Stefan Bruckner,et al.  Integrating volume visualization techniques into medical applications , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[30]  Bernhard Preim,et al.  Visualization in Medicine: Theory, Algorithms, and Applications , 2007 .

[31]  Jian Zhang,et al.  Efficient opacity specification based on feature visibilities in direct volume rendering , 2011, Comput. Graph. Forum.

[32]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[33]  Enrico Gobbetti,et al.  GPU Accelerated Direct Volume Rendering on an Interactive Light Field Display , 2008, Comput. Graph. Forum.

[34]  Eduard Gröller,et al.  Feature peeling , 2007, GI '07.

[35]  Melanie Tory,et al.  Human factors in visualization research , 2004, IEEE Transactions on Visualization and Computer Graphics.

[36]  Hanchuan Peng,et al.  V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets , 2010, Nature Biotechnology.