A Structured Pseudospectral Method for H-infinity-Norm Computation of Large-Scale Descriptor Systems
暂无分享,去创建一个
[1] V. Mehrmann,et al. An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems , 2012 .
[2] Michael L. Overton,et al. Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..
[3] Timo Reis,et al. Lyapunov Balancing for Passivity-Preserving Model Reduction of RC Circuits , 2011, SIAM J. Appl. Dyn. Syst..
[4] N. Martins,et al. Gramian-Based Reduction Method Applied to Large Sparse Power System Descriptor Models , 2008, IEEE Transactions on Power Systems.
[5] Gerard L. G. Sleijpen,et al. Convergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration , 2008, SIAM J. Matrix Anal. Appl..
[6] Joost Rommes,et al. Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax=λBx with singular B , 2007, Math. Comput..
[7] P. Pellanda,et al. Computation of Transfer Function Dominant Zeros With Applications to Oscillation Damping Control of Large Power Systems , 2007, IEEE Transactions on Power Systems.
[8] N. Martins,et al. Efficient Computation of Multivariable Transfer Function Dominant Poles Using Subspace Acceleration , 2006, IEEE Transactions on Power Systems.
[9] N. Martins,et al. Efficient computation of transfer function dominant poles using subspace acceleration , 2006, IEEE Transactions on Power Systems.
[10] Volker Mehrmann,et al. Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .
[11] P. Dooren,et al. The H-infinity norm calculation for large sparse systems , 2004 .
[12] J. Doyle,et al. Essentials of Robust Control , 1997 .
[13] Kurt S. Riedel,et al. Generalized Epsilon-Pseudospectra , 1994, ArXiv.
[14] S. Boyd,et al. A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .
[15] M. Steinbuch,et al. A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .
[16] Stephen P. Boyd,et al. A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..
[17] L. Dai,et al. Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.
[18] R. Byers. A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .
[19] D. Hinrichsen,et al. Stability radius for structured perturbations and the algebraic Riccati equation , 1986 .
[20] Vasile Sima,et al. ${\cal L}_{\infty}$-Norm Computation for Continuous-Time Descriptor Systems Using Structured Matrix Pencils , 2012, IEEE Transactions on Automatic Control.
[21] Paul Van Dooren,et al. A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .
[22] R. Byers,et al. Numerische Simulation Auf Massiv Parallelen Rechnern Numerical Computation of Deeating Subspaces of Embedded Hamiltonian Pencils Preprint-reihe Des Chemnitzer Sfb 393 , 2022 .
[23] G. W. Stewart,et al. Computer Science and Scientific Computing , 1990 .
[24] D. Hinrichsen,et al. Real and Complex Stability Radii: A Survey , 1990 .