A Structured Pseudospectral Method for H-infinity-Norm Computation of Large-Scale Descriptor Systems

[1]  V. Mehrmann,et al.  An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems , 2012 .

[2]  Michael L. Overton,et al.  Fast Algorithms for the Approximation of the Pseudospectral Abscissa and Pseudospectral Radius of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[3]  Timo Reis,et al.  Lyapunov Balancing for Passivity-Preserving Model Reduction of RC Circuits , 2011, SIAM J. Appl. Dyn. Syst..

[4]  N. Martins,et al.  Gramian-Based Reduction Method Applied to Large Sparse Power System Descriptor Models , 2008, IEEE Transactions on Power Systems.

[5]  Gerard L. G. Sleijpen,et al.  Convergence of the Dominant Pole Algorithm and Rayleigh Quotient Iteration , 2008, SIAM J. Matrix Anal. Appl..

[6]  Joost Rommes,et al.  Arnoldi and Jacobi-Davidson methods for generalized eigenvalue problems Ax=λBx with singular B , 2007, Math. Comput..

[7]  P. Pellanda,et al.  Computation of Transfer Function Dominant Zeros With Applications to Oscillation Damping Control of Large Power Systems , 2007, IEEE Transactions on Power Systems.

[8]  N. Martins,et al.  Efficient Computation of Multivariable Transfer Function Dominant Poles Using Subspace Acceleration , 2006, IEEE Transactions on Power Systems.

[9]  N. Martins,et al.  Efficient computation of transfer function dominant poles using subspace acceleration , 2006, IEEE Transactions on Power Systems.

[10]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[11]  P. Dooren,et al.  The H-infinity norm calculation for large sparse systems , 2004 .

[12]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[13]  Kurt S. Riedel,et al.  Generalized Epsilon-Pseudospectra , 1994, ArXiv.

[14]  S. Boyd,et al.  A regularity result for the singular values of a transfer matrix and a quadratically convergent algorithm for computing its L ∞ -norm , 1990 .

[15]  M. Steinbuch,et al.  A fast algorithm to computer the H ∞ -norm of a transfer function matrix , 1990 .

[16]  Stephen P. Boyd,et al.  A bisection method for computing the H∞ norm of a transfer matrix and related problems , 1989, Math. Control. Signals Syst..

[17]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[18]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[19]  D. Hinrichsen,et al.  Stability radius for structured perturbations and the algebraic Riccati equation , 1986 .

[20]  Vasile Sima,et al.  ${\cal L}_{\infty}$-Norm Computation for Continuous-Time Descriptor Systems Using Structured Matrix Pencils , 2012, IEEE Transactions on Automatic Control.

[21]  Paul Van Dooren,et al.  A collection of benchmark examples for model reduction of linear time invariant dynamical systems. , 2002 .

[22]  R. Byers,et al.  Numerische Simulation Auf Massiv Parallelen Rechnern Numerical Computation of Deeating Subspaces of Embedded Hamiltonian Pencils Preprint-reihe Des Chemnitzer Sfb 393 , 2022 .

[23]  G. W. Stewart,et al.  Computer Science and Scientific Computing , 1990 .

[24]  D. Hinrichsen,et al.  Real and Complex Stability Radii: A Survey , 1990 .