Self-packing of centrally symmetric convex bodies in ℝ2
暂无分享,去创建一个
[1] K. Reinhardt. Über die dichteste gitterf örmige lagerung kongruenter bereiche in der ebene und eine besondere art konvexer kurven , 1934 .
[2] Herbert Busemann,et al. The Isoperimetric Problem in the Minkowski Plane , 1947 .
[3] H. Rund. The Differential Geometry of Finsler Spaces , 1959 .
[4] Helmut Groemer,et al. Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren , 1961 .
[5] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[6] Hans Zassenhaus,et al. Modern developments in the geometry of numbers , 1961 .
[7] H. Minkowski. Volumen und Oberfläche , 1903 .
[8] Norman Oler. The Slackness of Finite Packings in E 2 , 1962 .
[9] Kurt Mahler. The theorem of Minkowski-Hlawka , 1946 .
[10] J. Moon,et al. Some packing and covering theorems , 1967 .
[11] P. Kelly,et al. A Property of Minkowskian Circles , 1950 .
[12] Manfred Schroeder,et al. Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .
[13] C. A. Rogers. The closest packing of convex two-dimensional domains , 1951 .
[14] Ronald L. Graham,et al. ON TIGHTEST PACKINGS IN THE MINKOWSKI PLANE , 1972 .
[15] N. Oler,et al. An inequality in the geometry of numbers , 1961 .
[16] D. Du,et al. The Steiner ratio conjecture of Gilbert and Pollak is true. , 1990, Proceedings of the National Academy of Sciences of the United States of America.
[17] C. A. Rogers,et al. Packing and Covering , 1964 .
[18] Greg Kuperberg,et al. Double-lattice packings of convex bodies in the plane , 1990, Discret. Comput. Geom..
[19] T. Bonnesen,et al. Theorie der Konvexen Körper , 1934 .
[20] H. Minkowski. Volumen und Oberfläche , 1903 .