Self-packing of centrally symmetric convex bodies in ℝ2

AbstractLetB be a compact convex body symmetric around0 in ℝ2 which has nonempty interior, i.e., the unit ball of a two-dimensional Minkowski space. The self-packing radiusρ(m,B) is the smallestt such thattB can be packed withm translates of the interior ofB. Form≤6 we show that the self-packing radiusρ(m,B)=1+2/α(m,B) whereα(m,B) is the Minkowski length of the side of the largest equilateralm-gon inscribed inB (measured in the Minkowski metric determined byB). We showρ(6,B)=ρ(7,B)=3 for allB, and determine most of the largest and smallest values ofρ(m,B) form≤7. For allm we have % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVy0df9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lqpe0x% c9q8qqaqFn0dXdir-xcvk9pIe9q8qqaq-xir-f0-yqaqVeLsFr0-vr% 0-vr0xc8meaabaqaciGacaGaaeqabaWaaeaaeaaakeaadaqadaqaam% aalaaabaGaamyBaaqaaiabes7aKjaacIcaieqacaWFcbGaaiykaaaa% aiaawIcacaGLPaaadaahaaWcbeqaamaalyaabaGaaGymaaqaaiaaik% daaaaaaOGaeyOeI0YaaSaaaeaacaaIZaaabaGaaGOmaaaacqGHKjYO% cqaHbpGCcaGGOaGaamyBaiaacYcacaWFcbGaaiykaiabgsMiJoaabm% aabaWaaSaaaeaacaWGTbaabaGaeqiTdqMaaiikaiaa-jeacaGGPaaa% aaGaayjkaiaawMcaamaaCaaaleqabaWaaSGbaeaacaaIXaaabaGaaG% OmaaaaaaGccqGHRaWkcaaIXaGaaiilaaaa!576F! $$\left( {\frac{m}{{\delta (B)}}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} - \frac{3}{2} \leqslant \rho (m,B) \leqslant \left( {\frac{m}{{\delta (B)}}} \right)^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} + 1,$$ whereδ(B) is the packing density ofB in ℝ2.

[1]  K. Reinhardt Über die dichteste gitterf örmige lagerung kongruenter bereiche in der ebene und eine besondere art konvexer kurven , 1934 .

[2]  Herbert Busemann,et al.  The Isoperimetric Problem in the Minkowski Plane , 1947 .

[3]  H. Rund The Differential Geometry of Finsler Spaces , 1959 .

[4]  Helmut Groemer,et al.  Abschätzungen für die Anzahl der konvexen Körper, die einen konvexen Körper berühren , 1961 .

[5]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[6]  Hans Zassenhaus,et al.  Modern developments in the geometry of numbers , 1961 .

[7]  H. Minkowski Volumen und Oberfläche , 1903 .

[8]  Norman Oler The Slackness of Finite Packings in E 2 , 1962 .

[9]  Kurt Mahler The theorem of Minkowski-Hlawka , 1946 .

[10]  J. Moon,et al.  Some packing and covering theorems , 1967 .

[11]  P. Kelly,et al.  A Property of Minkowskian Circles , 1950 .

[12]  Manfred Schroeder,et al.  Fractals, Chaos, Power Laws: Minutes From an Infinite Paradise , 1992 .

[13]  C. A. Rogers The closest packing of convex two-dimensional domains , 1951 .

[14]  Ronald L. Graham,et al.  ON TIGHTEST PACKINGS IN THE MINKOWSKI PLANE , 1972 .

[15]  N. Oler,et al.  An inequality in the geometry of numbers , 1961 .

[16]  D. Du,et al.  The Steiner ratio conjecture of Gilbert and Pollak is true. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[17]  C. A. Rogers,et al.  Packing and Covering , 1964 .

[18]  Greg Kuperberg,et al.  Double-lattice packings of convex bodies in the plane , 1990, Discret. Comput. Geom..

[19]  T. Bonnesen,et al.  Theorie der Konvexen Körper , 1934 .

[20]  H. Minkowski Volumen und Oberfläche , 1903 .