Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D
暂无分享,去创建一个
[1] Stability of solitary waves for coupled nonlinear Schro¨dinger equations , 1996 .
[2] Luming Zhang,et al. New conservative difference schemes for a coupled nonlinear Schrödinger system , 2010, Appl. Math. Comput..
[3] Zhi-Zhong Sun,et al. The stability and convergence of a difference scheme for the Schrödinger equation on an infinite domain by using artificial boundary conditions , 2006, J. Comput. Phys..
[4] Yu-Lin Chou. Applications of Discrete Functional Analysis to the Finite Difference Method , 1991 .
[5] Alfio Borzì,et al. Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation , 2006 .
[6] Christophe Besse,et al. Absorbing Boundary Conditions for General Nonlinear Schrödinger Equations , 2011, SIAM J. Sci. Comput..
[7] Elder J. Villamizar-Roa,et al. Self-similarity and asymptotic stability for coupled nonlinear Schrödinger equations in high dimensions , 2012 .
[8] Weizhu Bao,et al. Uniform Error Estimates of Finite Difference Methods for the Nonlinear Schrödinger Equation with Wave Operator , 2012, SIAM J. Numer. Anal..
[9] D. Griffiths,et al. Introduction to Quantum Mechanics , 1960 .
[10] Qianshun Chang,et al. Difference Schemes for Solving the Generalized Nonlinear Schrödinger Equation , 1999 .
[11] Weiwei Sun,et al. Finite difference methods for a nonlinear and strongly coupled heat and moisture transport system in textile materials , 2012, Numerische Mathematik.
[12] Lixin Wu,et al. DuFort--Frankel-Type Methods for Linear and Nonlinear Schrödinger Equations , 1996 .
[13] Y. Tourigny,et al. Optimal H1 Estimates for two Time-discrete Galerkin Approximations of a Nonlinear Schrödinger Equation , 1991 .
[14] Weiwei Sun,et al. Error Estimates of Splitting Galerkin Methods for Heat and Sweat Transport in Textile Materials , 2013, SIAM J. Numer. Anal..
[15] Ameneh Taleei,et al. Numerical solution of nonlinear Schrödinger equation by using time‐space pseudo‐spectral method , 2010 .
[16] J. M. Sanz-Serna,et al. Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .
[17] Georgios E. Zouraris,et al. On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation , 2001 .
[18] Zhi-Zhong Sun,et al. Error Estimate of Fourth-Order Compact Scheme for Linear Schrödinger Equations , 2010, SIAM J. Numer. Anal..
[19] C.-S. Chien,et al. Multilevel Spectral-Galerkin and Continuation Methods for Nonlinear Schrödinger Equations , 2009, Multiscale Model. Simul..
[20] Tingchun Wang,et al. A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation , 2009, J. Comput. Appl. Math..
[21] Heping Ma,et al. Error analysis for solving the Korteweg‐de Vries equation by a Legendre pseudo‐spectral method , 2000 .
[22] Sergey Leble,et al. On convergence and stability of a numerical scheme of Coupled Nonlinear Schrödinger Equations , 2008, Comput. Math. Appl..
[23] Qianshun Chang,et al. Finite difference method for generalized Zakharov equations , 1995 .
[24] M. Salazar-Palma,et al. An Unconditionally Stable Scheme for the , 2003 .
[25] Thiab R. Taha,et al. Numerical simulation of coupled nonlinear Schrödinger equation , 2001 .
[26] Yinnian He,et al. Finite element approximation for the viscoelastic fluid motion problem , 2003 .
[27] Alice C. Yew,et al. Stability Analysis of Multipulses in Nonlinearly-Coupled Schrodinger Equations , 2000 .
[28] Graeme Fairweather,et al. Discrete-time Orthogonal Spline Collocation Methods for Schrödinger Equations in Two Space Variables , 1998 .
[29] A. G. Bratsos. A modified numerical scheme for the cubic Schrödinger equation , 2011 .
[30] Thiab R. Taha,et al. A linearly implicit conservative scheme for the coupled nonlinear Schrödinger equation , 2007, Math. Comput. Simul..
[31] Tony F. Chan,et al. Stability analysis of difference schemes for variable coefficient Schro¨dinger type equations , 1987 .
[32] Graeme Fairweather,et al. Three level Galerkin methods for parabolic equations , 1974 .
[33] M. Radziunas,et al. On Convergence and Stability of the Explicit Difference Method for Solution of Nonlinear Schrödinger Equations , 1999 .
[34] R. Glassey. Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension , 1992 .
[35] Guangwei Yuan,et al. Convergence and stability of explicit/implicit schemes for parabolic equations with discontinuous coefficients , 2004 .
[36] Zhi-Zhong Sun,et al. On the L∞ convergence of a difference scheme for coupled nonlinear Schrödinger equations , 2010, Comput. Math. Appl..
[37] Akira Hasegawa,et al. Optical solitons in fibers , 1993, International Commission for Optics.
[38] C. Menyuk,et al. Stability of solitons in birefringent optical fibers. I: equal propagation amplitudes. , 1987, Optics letters.