Myocardial ischemia-reperfusion injury; Molecular mechanisms and prevention.

[1]  S. A. Sehgal,et al.  Pharmacological Progress of Mitophagy Regulation , 2023, Current neuropharmacology.

[2]  J. Kou,et al.  Omentin1 ameliorates myocardial ischemia-induced heart failure via SIRT3/FOXO3a-dependent mitochondrial dynamical homeostasis and mitophagy , 2022, Journal of Translational Medicine.

[3]  Sam Toan,et al.  Therapeutic strategies in ischemic cardiomyopathy: Focus on mitochondrial quality surveillance , 2022, EBioMedicine.

[4]  G. Yi,et al.  Targeted Mitochondrial Drugs for Treatment of Ischemia-Reperfusion Injury. , 2022, Current drug targets.

[5]  Huan‐Xin Chen,et al.  Targeting IRE1α-JNK-c-Jun/AP-1-sEH Signaling Pathway Improves Myocardial and Coronary Endothelial Function Following Global Myocardial Ischemia/Reperfusion , 2022, International journal of medical sciences.

[6]  Rongjun Zou,et al.  SGLT2 inhibitor dapagliflozin reduces endothelial dysfunction and microvascular damage during cardiac ischemia/reperfusion injury through normalizing the XO-SERCA2-CaMKII-coffilin pathways , 2022, Theranostics.

[7]  P. Évora,et al.  Vascular Endothelial Dysfunction in Ischemic Reperfusion Injury Needs Constant Updating. , 2022, Current drug targets.

[8]  M. Irwin,et al.  MicroRNA-503 Exacerbates Myocardial Ischemia/Reperfusion Injury via Inhibiting PI3K/Akt- and STAT3-Dependent Prosurvival Signaling Pathways , 2022, Oxidative medicine and cellular longevity.

[9]  Houxiang Hu,et al.  Mesenchymal stem cell-derived exosomal microRNA-182-5p alleviates myocardial ischemia/reperfusion injury by targeting GSDMD in mice , 2022, Cell Death Discovery.

[10]  Mehran Ghasemzadeh,et al.  Platelet-leukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis? , 2022, Thrombosis Research.

[11]  V. Rago,et al.  The Antioxidant Selenoprotein T Mimetic, PSELT, Induces Preconditioning-like Myocardial Protection by Relieving Endoplasmic-Reticulum Stress , 2022, Antioxidants.

[12]  D. Kreisel,et al.  CCL17 Aggravates Myocardial Injury by Suppressing Recruitment of Regulatory T Cells , 2022, Circulation.

[13]  F. Gao,et al.  CTRP3 alleviates cardiac ischemia/reperfusion injury via LAMP1/JIP2/JNK signaling pathway , 2022, Aging.

[14]  Seyda Cankaya,et al.  The Effect of Resveratrol on Sphingosine-1 and Oxidative/ Nitrosative Stress in an Experimental Heart Ischemia Reperfusion Model , 2022, Revista Romana de Medicina de Laborator.

[15]  Jiyao Zhang,et al.  MicroRNA as a Potential Biomarker and Treatment Strategy for Ischemia-Reperfusion Injury , 2021, International journal of genomics.

[16]  Deqing Wang,et al.  Exosomal microRNA-98-5p from hypoxic bone marrow mesenchymal stem cells inhibits myocardial ischemia-reperfusion injury by reducing TLR4 and activating the PI3K/Akt signaling pathway. , 2021, International immunopharmacology.

[17]  C. Zazueta,et al.  Mitochondrial Quality Control in Cardiac-Conditioning Strategies against Ischemia-Reperfusion Injury , 2021, Life.

[18]  P. Kang,et al.  Bilirubin Nanoparticles Protect Against Cardiac Ischemia/Reperfusion Injury in Mice , 2021, Journal of the American Heart Association.

[19]  Qiulun Lu,et al.  Dioscin Attenuates Myocardial Ischemic/Reperfusion-Induced Cardiac Dysfunction through Suppression of Reactive Oxygen Species , 2021, Oxidative medicine and cellular longevity.

[20]  Qiu-huan Yuan,et al.  4-Hydroxy-2-Nonenal Promotes Cardiomyocyte Necroptosis via Stabilizing Receptor-Interacting Serine/Threonine-Protein Kinase 1 , 2021, Frontiers in Cell and Developmental Biology.

[21]  Shaoyi Zheng,et al.  MicroRNA-29b reduces myocardial ischemia–reperfusion injury in rats via down-regulating PTEN and activating the Akt/eNOS signaling pathway , 2021, Journal of Thrombosis and Thrombolysis.

[22]  Min Guo,et al.  MicroRNA-30c-5p protects against myocardial ischemia/reperfusion injury via regulation of Bach1/Nrf2. , 2021, Toxicology and applied pharmacology.

[23]  Chengbin Wang,et al.  The Role of Mitochondrial Quality Control in Cardiac Ischemia/Reperfusion Injury , 2021, Oxidative medicine and cellular longevity.

[24]  P. Ferdinandy,et al.  Systematic review and network analysis of microRNAs involved in cardioprotection against myocardial ischemia/reperfusion injury and infarction: involvement of redox signalling. , 2021, Free radical biology & medicine.

[25]  Jun Ren,et al.  Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control , 2021, Theranostics.

[26]  HongYan Ma,et al.  microRNA‐129 overexpression in endothelial cell‐derived extracellular vesicle influences inflammatory response caused by myocardial ischemia/reperfusion injury , 2021, Cell biology international.

[27]  N. Chattipakorn,et al.  Post-Ischemic Treatment of Recombinant Human Secretory Leukocyte Protease Inhibitor (rhSLPI) Reduced Myocardial Ischemia/Reperfusion Injury , 2021, Biomedicines.

[28]  Jian Wu,et al.  Hypertrophic preconditioning cardioprotection after myocardial ischaemia/reperfusion injury involves ALDH2-dependent metabolism modulation , 2021, Redox biology.

[29]  Zheng Wang,et al.  Lycium barbarum polysaccharides inhibit ischemia/reperfusion-induced myocardial injury via the Nrf2 antioxidant pathway , 2021, Toxicology reports.

[30]  Zezhou Xiao,et al.  ELAVL1 is transcriptionally activated by FOXC1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy , 2021, Molecular medicine.

[31]  Wanqing Sun,et al.  Sestrin2 is an endogenous antioxidant that improves contractile function in the heart during exposure to ischemia and reperfusion stress. , 2021, Free radical biology & medicine.

[32]  Gang Zhao,et al.  Activation of CXCL16/CXCR6 axis aggravates cardiac ischemia/reperfusion injury by recruiting the IL‐17a‐producing CD1d+ T cells , 2021, Clinical and translational medicine.

[33]  R. Korthuis,et al.  Elevated post-ischemic tissue injury and leukocyte-endothelial adhesive interactions in mice with global deficiency in caveolin-2: role of PAI-1. , 2021, American journal of physiology. Heart and circulatory physiology.

[34]  J. Ge,et al.  Alda-1 treatment promotes the therapeutic effect of mitochondrial transplantation for myocardial ischemia-reperfusion injury , 2021, Bioactive materials.

[35]  Jun Ren,et al.  Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside , 2020, Ageing Research Reviews.

[36]  K. Ramkumar,et al.  MicroRNA mediated regulation of the major redox homeostasis switch, Nrf2, and its impact on oxidative stress-induced ischemic/reperfusion injury. , 2020, Archives of biochemistry and biophysics.

[37]  Hao Zhou,et al.  Mitochondrial quality surveillance as a therapeutic target in myocardial infarction , 2020, Acta physiologica.

[38]  S. P. Syatkin,et al.  BCL2-regulated apoptotic process in myocardial ischemia-reperfusion injury (Review) , 2020, International journal of molecular medicine.

[39]  K. Ning,et al.  ATP-Sensitive Potassium Channels Mediate the Cardioprotective Effect of Panax notoginseng Saponins against Myocardial Ischaemia–Reperfusion Injury and Inflammatory Reaction , 2020, BioMed research international.

[40]  Yuzhi Lu,et al.  A Unique Population of Regulatory T Cells in Heart Potentiates Cardiac Protection from Myocardial Infarction. , 2020, Circulation.

[41]  Hao Zhou,et al.  SERCA Overexpression Improves Mitochondrial Quality Control and Attenuates Cardiac Microvascular Ischemia-Reperfusion Injury , 2020, Molecular therapy. Nucleic acids.

[42]  Jia Hu,et al.  MicroRNA-128-1-5p attenuates myocardial ischemia/reperfusion injury by suppressing Gadd45g-mediated apoptotic signaling. , 2020, Biochemical and biophysical research communications.

[43]  Rulin Zhuang,et al.  Regulatory T cells in ischemic cardiovascular injury and repair. , 2020, Journal of molecular and cellular cardiology.

[44]  Dezhao Lu,et al.  Ferroptotic Cell Death: New Regulatory Mechanisms for Metabolic Diseases. , 2020, Endocrine, metabolic & immune disorders drug targets.

[45]  Mohammad Javad Tavassolifar,et al.  The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis , 2020, Autoimmune diseases.

[46]  Juan Zhang,et al.  Increased ROCK1 not ROCK2 in circulating leukocytes in rats with myocardial ischemia/reperfusion , 2020, Perfusion.

[47]  Hao Zhou,et al.  Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia–reperfusion injury , 2020, Acta pharmaceutica Sinica. B.

[48]  Hao Zhou,et al.  New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury , 2020, Angiogenesis.

[49]  Hao Zhou,et al.  Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: New insights into the mechanisms and therapeutic potentials. , 2020, Pharmacological research.

[50]  P. Pagliaro,et al.  Mitochondrial and mitochondrial‐independent pathways of myocardial cell death during ischaemia and reperfusion injury , 2020, Journal of cellular and molecular medicine.

[51]  L. Khachigian,et al.  Remote Ischemic Preconditioning Induces Cardioprotective Autophagy and Signals through the IL-6-Dependent JAK-STAT Pathway , 2020, International journal of molecular sciences.

[52]  E. Gao,et al.  TXNIP/Redd1 Signaling and Excessive Autophagy: A Novel Mechanism of Myocardial Ischemia/Reperfusion Injury in Mice. , 2020, Cardiovascular research.

[53]  Gongxiao Zhao,et al.  Hydrogen‐rich water alleviates cyclosporine A‐induced nephrotoxicity via the Keap1/Nrf2 signaling pathway , 2020, Journal of biochemical and molecular toxicology.

[54]  Sulan Yan,et al.  Cotreatments with Dex and Na2SeO3 further improved antioxidant and anti-inflammatory protection of myocardial cells from I/R injury compared to their individual treatments , 2020, Free radical research.

[55]  Hao Zhou,et al.  Pathological Roles of Mitochondrial Oxidative Stress and Mitochondrial Dynamics in Cardiac Microvascular Ischemia/Reperfusion Injury , 2020, Biomolecules.

[56]  Y. Leng,et al.  Ferroptosis Is Involved in Diabetes Myocardial Ischemia/Reperfusion Injury Through Endoplasmic Reticulum Stress. , 2019, DNA and cell biology.

[57]  J. Downey,et al.  Erratum: Guidelines for evaluating myocardial cell death (American Journal of Physiology - Heart and Circulatory Physiology (2019) 317 (H891-H922) DOI: 10.1152/ajpheart.00259.2019) , 2019 .

[58]  Fulin Liu,et al.  Effect of hydrogen-rich water on the Nrf2/ARE signaling pathway in rats with myocardial ischemia-reperfusion injury , 2019, Journal of Bioenergetics and Biomembranes.

[59]  Jie Lin,et al.  MiR-149 Aggravates Pyroptosis in Myocardial Ischemia-Reperfusion Damage via Silencing FoxO3 , 2019, Medical science monitor : international medical journal of experimental and clinical research.

[60]  Xi-ming Chen,et al.  MicroRNA-374a protects against myocardial ischemia-reperfusion injury in mice by targeting the MAPK6 pathway. , 2019, Life sciences.

[61]  X. Biao,et al.  miRNA-181a over-expression in mesenchymal stem cell-derived exosomes influenced inflammatory response after myocardial ischemia-reperfusion injury. , 2019, Life sciences.

[62]  Wen Zhou,et al.  A novel ferulic acid derivative attenuates myocardial cell hypoxia reoxygenation injury through a succinate dehydrogenase dependent antioxidant mechanism. , 2019, European journal of pharmacology.

[63]  T. Kwon,et al.  Delivery of therapeutic miRNA using polymer-based formulation , 2019, Drug Delivery and Translational Research.

[64]  F. Collin Chemical Basis of Reactive Oxygen Species Reactivity and Involvement in Neurodegenerative Diseases , 2019, International journal of molecular sciences.

[65]  B. V. Van Tassell,et al.  The NLRP3 Inflammasome Inhibitor, OLT1177 (Dapansutrile), Reduces Infarct Size and Preserves Contractile Function After Ischemia Reperfusion Injury in the Mouse , 2019, Journal of cardiovascular pharmacology.

[66]  Mehran Ghasemzadeh,et al.  ROS scavenger, N‐acetyl‐l‐cysteine and NOX specific inhibitor, VAS2870 reduce platelets apoptosis while enhancing their viability during storage , 2019, Transfusion.

[67]  A. Alizadeh,et al.  Targeting autophagy in cardiac ischemia/reperfusion injury: A novel therapeutic strategy , 2019, Journal of cellular physiology.

[68]  C. Wainwright,et al.  Acute dietary zinc deficiency in rats exacerbates myocardial ischaemia–reperfusion injury through depletion of glutathione , 2019, British Journal of Nutrition.

[69]  Ju-Eun Oh,et al.  Protective Effect of Ethyl Pyruvate against Myocardial Ischemia Reperfusion Injury through Regulations of ROS-Related NLRP3 Inflammasome Activation , 2019, Oxidative medicine and cellular longevity.

[70]  Xiaofeng Yu,et al.  Alprostadil attenuates myocardial ischemia/reperfusion injury by promoting antioxidant activity and eNOS activation in rats. , 2018, Acta cirurgica brasileira.

[71]  Xianhe Lin,et al.  The novel relationship between Sirt3 and autophagy in myocardial ischemia–reperfusion , 2018, Journal of cellular physiology.

[72]  L. Edvinsson,et al.  Role of pannexin and adenosine triphosphate (ATP) following myocardial ischemia/reperfusion , 2018, Scandinavian cardiovascular journal : SCJ.

[73]  Fei-fei Su,et al.  MicroRNA-24-3p Attenuates Myocardial Ischemia/Reperfusion Injury by Suppressing RIPK1 Expression in Mice , 2018, Cellular Physiology and Biochemistry.

[74]  Hong Jin,et al.  Design, synthesis and antifungal evaluation of novel pyrazole carboxamides with diarylamines scaffold as potent succinate dehydrogenase inhibitors. , 2018, Bioorganic & medicinal chemistry letters.

[75]  Shuguo Yang,et al.  MicroRNA‐140 attenuates myocardial ischemia‐reperfusion injury through suppressing mitochondria‐mediated apoptosis by targeting YES1 , 2018, Journal of cellular biochemistry.

[76]  Shi-feng Chu,et al.  Ginsenoside Rg1 protects against ischemic/reperfusion-induced neuronal injury through miR-144/Nrf2/ARE pathway , 2018, Acta Pharmacologica Sinica.

[77]  Xuan Sun,et al.  Intravenous mesenchymal stem cell-derived exosomes ameliorate myocardial inflammation in the dilated cardiomyopathy. , 2018, Biochemical and biophysical research communications.

[78]  J. Roselló-Catafau,et al.  Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update , 2018, World journal of gastroenterology.

[79]  Fei Wang,et al.  Attenuation of Na/K-ATPase/Src/ROS amplification signal pathway with pNaktide ameliorates myocardial ischemia-reperfusion injury. , 2018, International journal of biological macromolecules.

[80]  M. Osthoff,et al.  The Lectin Pathway of Complement in Myocardial Ischemia/Reperfusion Injury—Review of Its Significance and the Potential Impact of Therapeutic Interference by C1 Esterase Inhibitor , 2018, Front. Immunol..

[81]  G. Kibria,et al.  Exosomes as a Drug Delivery System in Cancer Therapy: Potential and Challenges. , 2018, Molecular pharmaceutics.

[82]  S. Barrère‐lemaire,et al.  The cardioprotective effects of secretory leukocyte protease inhibitor against myocardial ischemia/reperfusion injury , 2018, Experimental and therapeutic medicine.

[83]  Jun Ren,et al.  BI1 is associated with microvascular protection in cardiac ischemia reperfusion injury via repressing Syk–Nox2–Drp1-mitochondrial fission pathways , 2018, Angiogenesis.

[84]  M. Tariq,et al.  Molecular mechanism and therapy application of necrosis during myocardial injury , 2018, Journal of cellular and molecular medicine.

[85]  Yundai Chen,et al.  Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway , 2018, Redox biology.

[86]  M. Giacca,et al.  The innate immune system in chronic cardiomyopathy: a European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC , 2018, European journal of heart failure.

[87]  D. Letourneur,et al.  Astaxanthin-antioxidant impact on excessive Reactive Oxygen Species generation induced by ischemia and reperfusion injury. , 2018, Chemico-biological interactions.

[88]  C. Zhai,et al.  MicroRNA-206 Protects against Myocardial Ischaemia-Reperfusion Injury in Rats by Targeting Gadd45β , 2017, Molecules and cells.

[89]  Hui Liu,et al.  Overexpression of TIMP3 Protects Against Cardiac Ischemia/Reperfusion Injury by Inhibiting Myocardial Apoptosis Through ROS/Mapks Pathway , 2017, Cellular Physiology and Biochemistry.

[90]  Dawei Sun,et al.  Cardioprotective Effect of Danshensu against Ischemic/Reperfusion Injury via c-Subunit of ATP Synthase Inhibition , 2017, Evidence-based complementary and alternative medicine : eCAM.

[91]  M. Landry,et al.  Selenoprotein T is a novel OST subunit that regulates UPR signaling and hormone secretion , 2017, EMBO reports.

[92]  Yan Zheng,et al.  Inhibition of microRNA‐153 protects neurons against ischemia/reperfusion injury in an oxygen–glucose deprivation and reoxygenation cellular model by regulating Nrf2/HO‐1 signaling , 2017, Journal of biochemical and molecular toxicology.

[93]  Xiaoye Lin,et al.  MicroRNA-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating BNIP3 , 2017, Bioscience, biotechnology, and biochemistry.

[94]  T. Sanderson,et al.  Mitochondrial Quality Control and Disease: Insights into Ischemia-Reperfusion Injury , 2017, Molecular Neurobiology.

[95]  N. Abraham,et al.  RETRACTED ARTICLE: pNaKtide Attenuates Steatohepatitis and Atherosclerosis by Blocking Na/K-ATPase/ROS Amplification in C57Bl6 and ApoE Knockout Mice Fed a Western Diet , 2017, Scientific Reports.

[96]  Chuan-Qi Zhong,et al.  RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome , 2017, Nature Communications.

[97]  Jason L Johnson,et al.  MicroRNA-181b Controls Atherosclerosis and Aneurysms Through Regulation of TIMP-3 and Elastin , 2017, Circulation research.

[98]  A. J. Valente,et al.  Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling* , 2017, The Journal of Biological Chemistry.

[99]  Jun Yang,et al.  microRNA-22 attenuates myocardial ischemia-reperfusion injury via an anti-inflammatory mechanism in rats , 2016, Experimental and therapeutic medicine.

[100]  J. Shapiro,et al.  The Role of Na/K-ATPase Signaling in Oxidative Stress Related to Obesity and Cardiovascular Disease , 2016, Molecules.

[101]  Yan Zhu,et al.  Danshensu alleviates cardiac ischaemia/reperfusion injury by inhibiting autophagy and apoptosis via activation of mTOR signalling , 2016, Journal of cellular and molecular medicine.

[102]  X. Ni,et al.  Upregulation of microRNA-22 contributes to myocardial ischemia-reperfusion injury by interfering with the mitochondrial function. , 2016, Free radical biology & medicine.

[103]  E. Galkina,et al.  CXCR6 regulates the recruitment of pro-inflammatory IL-17A-producing T cells into atherosclerotic aortas. , 2016, International immunology.

[104]  Junhui Xing,et al.  Aldehyde Dehydrogenase 2 Has Cardioprotective Effects on Myocardial Ischaemia/Reperfusion Injury via Suppressing Mitophagy , 2016, Front. Pharmacol..

[105]  Lefeng Wang,et al.  Tissue inhibitor of metalloproteinases 3-dependent microvascular endothelial cell barrier function is disrupted under septic conditions. , 2016, American journal of physiology. Heart and circulatory physiology.

[106]  Ye Tian,et al.  Role of microRNA-195 in cardiomyocyte apoptosis induced by myocardial ischaemia–reperfusion injury , 2016, Journal of Genetics.

[107]  M. Underwood,et al.  Cellular and molecular mechanisms of endothelial ischemia/reperfusion injury: perspectives and implications for postischemic myocardial protection. , 2016, American journal of translational research.

[108]  Yi-dong Wang,et al.  Regulatory T lymphocytes in myocardial infarction: A promising new therapeutic target. , 2016, International journal of cardiology.

[109]  Li Jin,et al.  CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress–induced myocardial necroptosis , 2016, Nature Medicine.

[110]  E. Kurutaş The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state , 2015, Nutrition Journal.

[111]  K. Tenbrock,et al.  Oxidative stress in multiple sclerosis: Central and peripheral mode of action , 2015, Experimental Neurology.

[112]  Wen-Feng Cai,et al.  HAX-1 regulates cyclophilin-D levels and mitochondria permeability transition pore in the heart , 2015, Proceedings of the National Academy of Sciences.

[113]  C. Chuang,et al.  Molecular Characterization of Reactive Oxygen Species in Myocardial Ischemia-Reperfusion Injury , 2015, BioMed research international.

[114]  Weijian Huang,et al.  Berberine alleviates cardiac ischemia/reperfusion injury by inhibiting excessive autophagy in cardiomyocytes. , 2015, European journal of pharmacology.

[115]  Dongsheng Zhang,et al.  Hypoxia-induced autophagy contributes to the invasion of salivary adenoid cystic carcinoma through the HIF-1α/BNIP3 signaling pathway , 2015, Molecular medicine reports.

[116]  Jin Han,et al.  The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling , 2015, The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology.

[117]  Jian Yang,et al.  The role of microRNAs in regulating myocardial ischemia reperfusion injury , 2015, Saudi medical journal.

[118]  P. Valet,et al.  Structural apelin analogues: mitochondrial ROS inhibition and cardiometabolic protection in myocardial ischaemia reperfusion injury , 2015, British journal of pharmacology.

[119]  Mehran Ghasemzadeh,et al.  Intravascular leukocyte migration through platelet thrombi: directing leukocytes to sites of vascular injury , 2015, Thrombosis and Haemostasis.

[120]  F. Van de Werf,et al.  Evolving therapies for myocardial ischemia/reperfusion injury. , 2015, Journal of the American College of Cardiology.

[121]  Jiankang Liu,et al.  Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury following ischemia/reperfusion. , 2015, Biochimica et biophysica acta.

[122]  M. Neuberger,et al.  Uracil excision by endogenous SMUG1 glycosylase promotes efficient Ig class switching and impacts on A:T substitutions during somatic mutation , 2014, European journal of immunology.

[123]  S. Frantz,et al.  Role of Lymphocytes in Myocardial Injury, Healing, and Remodeling After Myocardial Infarction , 2015, Circulation research.

[124]  G. Liang,et al.  Novel curcumin analogue 14p protects against myocardial ischemia reperfusion injury through Nrf2-activating anti-oxidative activity. , 2015, Toxicology and applied pharmacology.

[125]  P. Plastina,et al.  Inhibition of COX‐2‐mediated eicosanoid production plays a major role in the anti‐inflammatory effects of the endocannabinoid N‐docosahexaenoylethanolamine (DHEA) in macrophages , 2015, British journal of pharmacology.

[126]  G. Vilahur,et al.  Ischemia/reperfusion activates myocardial innate immune response: the key role of the toll-like receptor , 2014, Front. Physiol..

[127]  J. Molkentin,et al.  Transforming Growth Factor &bgr;–Activated Kinase 1 Signaling Pathway Critically Regulates Myocardial Survival and Remodeling , 2014, Circulation.

[128]  Bisharad Anil Thapalia,et al.  Autophagy, a process within reperfusion injury: an update. , 2014, International journal of clinical and experimental pathology.

[129]  Jia Liu,et al.  The Protective Effect of MicroRNA-320 on Left Ventricular Remodeling after Myocardial Ischemia-Reperfusion Injury in the Rat Model , 2014, International journal of molecular sciences.

[130]  S. Cullen,et al.  Bcl-2 family proteins participate in mitochondrial quality control by regulating Parkin/PINK1-dependent mitophagy. , 2014, Molecular cell.

[131]  Shoei-Shen Wang,et al.  Progressive thermopreconditioning attenuates rat cardiac ischemia/reperfusion injury by mitochondria-mediated antioxidant and antiapoptotic mechanisms. , 2014, The Journal of thoracic and cardiovascular surgery.

[132]  Florian Reisinger,et al.  RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. , 2014, Cardiovascular research.

[133]  D. Kirkpatrick,et al.  The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy , 2014, Nature.

[134]  M. Latronico,et al.  microRNAs in cardiovascular diseases: current knowledge and the road ahead. , 2014, Journal of the American College of Cardiology.

[135]  S. Kaneko,et al.  Rho-Kinase Activation in Leukocytes Plays a Pivotal Role in Myocardial Ischemia/Reperfusion Injury , 2014, PloS one.

[136]  S. Matoba,et al.  Cytosolic p53 inhibits Parkin-mediated mitophagy and promotes mitochondrial dysfunction in the mouse heart , 2013, Nature Communications.

[137]  Steven P Jones,et al.  Historical perspective on the pathology of myocardial ischemia/reperfusion injury. , 2013, Circulation research.

[138]  E. Porrello microRNAs in cardiac development and regeneration. , 2013, Clinical science.

[139]  Amabel M. Orogo,et al.  Cell death in the myocardium: My heart won't go on , 2013, IUBMB life.

[140]  P. Gál,et al.  The control of the complement lectin pathway activation revisited: both C1-inhibitor and antithrombin are likely physiological inhibitors, while α2-macroglobulin is not. , 2013, Molecular immunology.

[141]  S. McColl,et al.  The CXCR1/2 ligand NAP-2 promotes directed intravascular leukocyte migration through platelet thrombi. , 2013, Blood.

[142]  J. Kalbfleisch,et al.  Increased expression of microRNA-146a decreases myocardial ischaemia/reperfusion injury. , 2013, Cardiovascular research.

[143]  Mehran Ghasemzadeh,et al.  Platelet-leukocyte crosstalk: Linking proinflammatory responses to procoagulant state. , 2013, Thrombosis research.

[144]  P. Lograsso,et al.  Inhibition of JNK Mitochondrial Localization and Signaling Is Protective against Ischemia/Reperfusion Injury in Rats* , 2012, The Journal of Biological Chemistry.

[145]  W. Schwaeble,et al.  The complement system in ischemia-reperfusion injuries. , 2012, Immunobiology.

[146]  J. Zhan,et al.  Honokiol protects rat hearts against myocardial ischemia reperfusion injury by reducing oxidative stress and inflammation , 2012, Experimental and therapeutic medicine.

[147]  C. Benoist,et al.  Treg cells, life history, and diversity. , 2012, Cold Spring Harbor perspectives in biology.

[148]  P. Kranke,et al.  Remote Ischemic Conditioning to Protect against Ischemia-Reperfusion Injury: A Systematic Review and Meta-Analysis , 2012, PloS one.

[149]  E. Siles,et al.  ROS-induced DNA damage and PARP-1 are required for optimal induction of starvation-induced autophagy , 2012, Cell Research.

[150]  Xiuhua Liu,et al.  MicroRNA-15a/b are up-regulated in response to myocardial ischemia/reperfusion injury , 2012, Journal of geriatric cardiology : JGC.

[151]  Richard T. Lee,et al.  Deletion of thioredoxin-interacting protein in mice impairs mitochondrial function but protects the myocardium from ischemia-reperfusion injury. , 2012, The Journal of clinical investigation.

[152]  A. Criollo,et al.  Cardiomyocyte death: mechanisms and translational implications , 2011, Cell Death and Disease.

[153]  N. Voelkel,et al.  The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse , 2011, Proceedings of the National Academy of Sciences.

[154]  S. Dikalov Cross talk between mitochondria and NADPH oxidases. , 2011, Free radical biology & medicine.

[155]  Stefano Monti,et al.  Genome-wide Translocation Sequencing Reveals Mechanisms of Chromosome Breaks and Rearrangements in B Cells , 2011, Cell.

[156]  T. Choe,et al.  TXNIP potentiates Redd1-induced mTOR suppression through stabilization of Redd1 , 2011, Oncogene.

[157]  N. Samani,et al.  Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury , 2011, Proceedings of the National Academy of Sciences.

[158]  H. Zhang,et al.  Role of miR-1 and miR-133a in myocardial ischemic postconditioning , 2011, Journal of Biomedical Science.

[159]  A. Rodríguez-Sinovas,et al.  Contribution of delayed intracellular pH recovery to ischemic postconditioning protection. , 2011, Antioxidants & redox signaling.

[160]  D. Sinclair,et al.  Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy , 2010, Aging.

[161]  G. Heusch,et al.  Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion , 2010, Basic Research in Cardiology.

[162]  M. Busche,et al.  Role of the complement components C5 and C3a in a mouse model of myocardial ischemia and reperfusion injury , 2010, German medical science : GMS e-journal.

[163]  Joseph A. Hill,et al.  Pathogenesis of myocardial ischemia-reperfusion injury and rationale for therapy. , 2010, The American journal of cardiology.

[164]  J. Ravetch,et al.  Antibody‐mediated modulation of immune responses , 2010, Immunological reviews.

[165]  D. Das,et al.  Cardioprotection by resveratrol: a novel mechanism via autophagy involving the mTORC2 pathway. , 2010, Cardiovascular research.

[166]  Mark H. Ellisman,et al.  Sestrin as a Feedback Inhibitor of TOR That Prevents Age-Related Pathologies , 2010, Science.

[167]  Anita K. Sharma,et al.  IL-10 attenuates TNF-alpha-induced NF kappaB pathway activation and cardiomyocyte apoptosis. , 2009, Cardiovascular research.

[168]  G. Haskó,et al.  HIF-1: a key mediator in hypoxia. , 2009, Acta physiologica Hungarica.

[169]  D. Dhanasekaran,et al.  JNK signaling in apoptosis , 2008, Oncogene.

[170]  M. Scherrer-Crosbie,et al.  Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. , 2008, American journal of physiology. Heart and circulatory physiology.

[171]  G. Rosano,et al.  Cardiac metabolism in myocardial ischemia. , 2008, Current pharmaceutical design.

[172]  B. Turk,et al.  AMPK phosphorylation of raptor mediates a metabolic checkpoint. , 2008, Molecular cell.

[173]  P. Schumacker,et al.  Role of hypoxia-inducible factor in cell survival during myocardial ischemia–reperfusion , 2008, Cell Death and Differentiation.

[174]  E. Werner,et al.  The Effect of Secretory Leukocyte Protease Inhibitor (SLPI) on Ischemia/Reperfusion Injury in Cardiac Transplantation , 2008, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[175]  P. Doevendans,et al.  Bridging innate immunity and myocardial ischemia/reperfusion injury: the search for therapeutic targets. , 2008, Current pharmaceutical design.

[176]  Richard T. Lee,et al.  Targeted Deletion of Thioredoxin-Interacting Protein Regulates Cardiac Dysfunction in Response to Pressure Overload , 2007, Circulation research.

[177]  C. Chien,et al.  Bcl-xL Augmentation Potentially Reduces Ischemia/Reperfusion Induced Proximal and Distal Tubular Apoptosis and Autophagy , 2007, Transplantation.

[178]  H. Parlakpınar,et al.  Beneficial effects of caffeic acid phenethyl ester (CAPE) on the ischaemia-reperfusion injury in rat skin flaps. , 2007, Journal of plastic, reconstructive & aesthetic surgery : JPRAS.

[179]  T. Asano,et al.  Distinct Roles of Autophagy in the Heart During Ischemia and Reperfusion: Roles of AMP-Activated Protein Kinase and Beclin 1 in Mediating Autophagy , 2007, Circulation research.

[180]  Shyam Biswal,et al.  Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. , 2007, Annual review of pharmacology and toxicology.

[181]  Rodney K. Chan,et al.  The Differing Roles of the Classical and Mannose-Binding Lectin Complement Pathways in the Events following Skeletal Muscle Ischemia-Reperfusion1 , 2006, The Journal of Immunology.

[182]  G. Semenza,et al.  Regulation of physiological responses to continuous and intermittent hypoxia by hypoxia‐inducible factor 1 , 2006, Experimental physiology.

[183]  M. Entman,et al.  The role of natural IgM in myocardial ischemia-reperfusion injury. , 2006, Journal of molecular and cellular cardiology.

[184]  G. Takemura,et al.  Morphological aspects of apoptosis in heart diseases , 2006, Journal of cellular and molecular medicine.

[185]  A. Fowler,et al.  HIF-1 activation attenuates postischemic myocardial injury: role for heme oxygenase-1 in modulating microvascular chemokine generation. , 2005, American journal of physiology. Heart and circulatory physiology.

[186]  M. Quintero,et al.  Hypoxia-inducible factor 1alpha in oral cancer. , 2005, Journal of oral pathology & medicine : official publication of the International Association of Oral Pathologists and the American Academy of Oral Pathology.

[187]  Jan-Kan Chen,et al.  Antioxidants and myocardial ischemia: reperfusion injuries. , 2005, Chang Gung medical journal.

[188]  Chien Chiang-Ting,et al.  Adenovirus‐Mediated bcl‐2 Gene Transfer Inhibits Renal Ischemia/Reperfusion Induced Tubular Oxidative Stress and Apoptosis , 2005 .

[189]  Guy Salama,et al.  Calmodulin kinase II inhibition protects against structural heart disease , 2005, Nature Medicine.

[190]  R. Poston,et al.  Myocardial reperfusion injury: etiology, mechanisms, and therapies. , 2004, The journal of extra-corporeal technology.

[191]  J. Karliner,et al.  Molecular determinants of responses to myocardial ischemia/reperfusion injury: focus on hypoxia-inducible and heat shock factors. , 2004, Cardiovascular research.

[192]  J. Hancox,et al.  Is timing everything? Therapeutic potential of modulators of cardiac Na+ transporters , 2003, Expert opinion on investigational drugs.

[193]  P. Heeringa,et al.  Inhibition of complement factor C5 protects against renal ischemia-reperfusion injury: inhibition of late apoptosis and inflammation1 , 2003, Transplantation.

[194]  M. White,et al.  Stimulus-specific Requirements for MAP3 Kinases in Activating the JNK Pathway* , 2002, The Journal of Biological Chemistry.

[195]  A. Lin,et al.  The true face of JNK activation in apoptosis , 2002, Aging cell.

[196]  C. Visser,et al.  Apoptosis in myocardial ischaemia and infarction , 2002, Journal of clinical pathology.

[197]  Michael C. Montalto,et al.  Inhibition of Mannose-Binding Lectin Reduces Postischemic Myocardial Reperfusion Injury , 2001, Circulation.

[198]  J. Ingwall,et al.  Cardiac-Specific Expression of Heme Oxygenase-1 Protects Against Ischemia and Reperfusion Injury in Transgenic Mice , 2001, Circulation research.

[199]  A. Fabbri,et al.  Systemic leukocyte filtration during cardiopulmonary bypass , 2001, Perfusion.

[200]  D. Bullard,et al.  Leukocyte and endothelial cell adhesion molecules in a chronic murine model of myocardial reperfusion injury. , 2000, American journal of physiology. Heart and circulatory physiology.

[201]  N. Dhalla,et al.  Status of myocardial antioxidants in ischemia-reperfusion injury. , 2000, Cardiovascular research.

[202]  S. Meri,et al.  Complement activation after oxidative stress: role of the lectin complement pathway. , 2000, The American journal of pathology.

[203]  D. Granger,et al.  Pathophysiology of ischaemia–reperfusion injury , 2000, The Journal of pathology.

[204]  R. Guyton,et al.  Reperfusion induces myocardial apoptotic cell death. , 2000, Cardiovascular research.

[205]  J. Vinten-johansen,et al.  The role of neutrophils in myocardial ischemia-reperfusion injury. , 1999, Cardiovascular research.

[206]  Y. Ho,et al.  Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. , 1998, Journal of molecular and cellular cardiology.

[207]  D. Mele,et al.  Oxidative stress during myocardial ischaemia and heart failure. , 1998, Current pharmaceutical design.

[208]  A. Angelini,et al.  In vivo evidence of apoptosis in arrhythmogenic right ventricular cardiomyopathy. , 1998, The American journal of pathology.

[209]  S. Korsmeyer,et al.  Bcl-2 and Bax function independently to regulate cell death , 1997, Nature Genetics.

[210]  R. Schiele,et al.  Primary Angioplasty Versus Thrombolysis in the Treatment of Acute Myocardial Infarction , 1997 .

[211]  S. Maxwell,et al.  Reperfusion injury: a review of the pathophysiology, clinical manifestations and therapeutic options. , 1997, International journal of cardiology.

[212]  J. Zweier,et al.  Measurement of Nitric Oxide and Peroxynitrite Generation in the Postischemic Heart , 1996, The Journal of Biological Chemistry.

[213]  M. Kilimann,et al.  A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. , 1993, The Journal of biological chemistry.

[214]  M. Hess,et al.  The oxygen free radical system: from equations through membrane-protein interactions to cardiovascular injury and protection. , 1992, Cardiovascular research.

[215]  K. Oldroyd,et al.  Coronary venous lipid peroxide concentrations after coronary angioplasty: correlation with biochemical and electrocardiographic evidence of myocardial ischaemia , 1992, British heart journal.

[216]  P. Ceriana Effect of Myocardial Ischaemia-reperfusion on Granulocyte Elastase Release , 1992, Anaesthesia and intensive care.

[217]  A. Malik,et al.  Reoxygenation of endothelial cells increases permeability by oxidant-dependent mechanisms. , 1992, Circulation research.

[218]  W. Nayler,et al.  RELATIONSHIP BETWEEN ATP RESYNTHESIS AND CALCIUM ACCUMULATION IN THE REPERFUSED RAT HEART , 1992, Clinical and experimental pharmacology & physiology.

[219]  A. Lochner,et al.  The effect of ischaemia and reperfusion on sarcolemmal inositol phospholipid and cytosolic inositol phosphate metabolism in the isolated perfused rat heart , 1991, Molecular and Cellular Biochemistry.

[220]  W. Parmley,et al.  Myocardial protection with verapamil during ischaemia and reperfusion: dissociation between myocardial salvage and the degree of ATP depletion during ischaemia. , 1991, Cardiovascular research.

[221]  J L Duerk,et al.  Distinguishing viable from infarcted myocardium after experimental ischemia and reperfusion by using nuclear magnetic resonance imaging. , 1990, Journal of the American College of Cardiology.

[222]  B. Freeman,et al.  Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[223]  B. Sobel,et al.  The temporal pattern of recovery of myocardial perfusion and metabolism delineated by positron emission tomography after coronary thrombolysis. , 1987, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[224]  R Peto,et al.  Effect of intravenous streptokinase on acute myocardial infarction: pooled results from randomized trials. , 1982, The New England journal of medicine.

[225]  P J Geiger,et al.  Transport of energy in muscle: the phosphorylcreatine shuttle. , 1981, Science.

[226]  K. Wildenthal,et al.  Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. , 1980, The American journal of pathology.

[227]  R. Jennings,et al.  Myocardial calcium and magnesium in acute ischemic injury. , 1972, The American journal of pathology.

[228]  R. Jennings,et al.  Metabolism of Ischemic Cardiac Muscle , 1960, Circulation research.

[229]  R. Jennings,et al.  Studies on distribution and localization to potassium in early myocardial ischemic injury. , 1957, A.M.A. archives of pathology.

[230]  OUP accepted manuscript , 2021, European Heart Journal: Acute Cardiovascular Care.

[231]  Q. Xiao,et al.  Foam cell formation: A new target for fighting atherosclerosis and cardiovascular disease. , 2019, Vascular pharmacology.

[232]  F. Shahidi,et al.  Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin , 2015 .

[233]  J. Sadoshima,et al.  The Importance of Autophagy in Cardioprotection , 2013, High Blood Pressure & Cardiovascular Prevention.

[234]  H. Parlakpınar,et al.  Pathophysiology of Myocardial Ischemia Reperfusion Injury: A Review , 2013 .

[235]  T. Littlewood,et al.  Cell death and survival signalling in the cardiovascular system. , 2012, Frontiers in bioscience.

[236]  L. Kirshenbaum,et al.  Cell death signalling mechanisms in heart failure. , 2011, Experimental and clinical cardiology.

[237]  H. Rabb,et al.  Lymphocytes and ischemia-reperfusion injury. , 2009, Transplantation reviews.

[238]  Guido Kroemer,et al.  Cell death by necrosis: towards a molecular definition. , 2007, Trends in biochemical sciences.

[239]  H. Eltzschig,et al.  Vascular ischaemia and reperfusion injury. , 2004, British medical bulletin.

[240]  M. Torres Mitogen-activated protein kinase pathways in redox signaling. , 2003, Frontiers in bioscience : a journal and virtual library.

[241]  M. Montalto,et al.  Inhibition of complement C5 reduces local and remote organ injury after intestinal ischemia/reperfusion in the rat. , 2001, Gastroenterology.

[242]  B. Lucchesi,et al.  Complement activation and inhibition in myocardial ischemia and reperfusion injury. , 1994, Annual review of pharmacology and toxicology.

[243]  J. Harlan,et al.  Cytokine-induced adhesion molecule expression on human umbilical vein endothelial cells is not regulated by cyclic adenosine monophosphate accumulation. , 1993, Life sciences.

[244]  M. Wyss,et al.  Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. , 1992, The Biochemical journal.

[245]  R. Jennings,et al.  The cell biology of acute myocardial ischemia. , 1991, Annual review of medicine.

[246]  C. Arroyo,et al.  Endothelial cells as a source of oxygen-free radicals. An ESR study. , 1990, Free radical research communications.

[247]  R. Jennings,et al.  Ensymatic changes in acute myocardial ischemic injury; glutamic oxaloacetic transaminase, lactic dehydrogenase, and succinic dehydrogenase. , 1957, A.M.A. archives of pathology.