Progress in modeling polarization optical components for the Daniel K. Inouye Solar Telescope

The DKIST will have a suite of first-light polarimetric instrumentation requiring precise calibration of a complex articulated optical path. The optics are subject to large thermal loads caused by the ~300Watts of collected solar irradiance across the 5 arc minute field of view. The calibration process requires stable optics to generate known polarization states. We present modeling of several optical, thermal and mechanical effects of the calibration optics, the first transmissive optical elements in the light path, because they absorb substantial heat. Previous studies showed significant angle of incidence effects from the f/13 converging beam and the 5 arc minute field of view, but were only modeled at a single nominal temperature. New thermal and polarization modeling of these calibration retarders shows heating causes significant stability limitations both in time and with field caused by the bulk temperature rise along with depth and radial thermal gradients. Modeling efforts include varying coating and material absorption, Mueller matrix stability estimates and mitigation efforts.

[1]  Christophe Verinaud,et al.  EPOL: the exoplanet polarimeter for EPICS at the E-ELT , 2010, Astronomical Telescopes + Instrumentation.

[2]  Roberto Casini,et al.  Performance of polarization modulation and calibration optics for the Daniel K. Inouye Solar Telescope , 2014, Astronomical Telescopes and Instrumentation.

[3]  Frans Snik,et al.  The upgrade of HARPS to a full-Stokes high-resolution spectropolarimeter , 2008, Astronomical Telescopes + Instrumentation.

[4]  Friedrich Wöger,et al.  The Daniel K. Inouye Solar Telescope first light instruments and critical science plan , 2014, Astronomical Telescopes and Instrumentation.

[5]  C. U. Keller,et al.  The polarization optics for the European Solar Telescope (EST) , 2010, Astronomical Telescopes + Instrumentation.

[6]  David Elmore,et al.  Characterization of telescope polarization properties across the visible and near-infrared spectrum Case study: the Dunn Solar Telescope , 2010, 1009.2866.

[7]  E. Popow,et al.  PEPSI: the Potsdam Echelle Polarimetric and Spectroscopic Instrument for the LBT , 2008, Astronomical Telescopes + Instrumentation.

[8]  Peter G. Nelson,et al.  Preliminary design of the visible spectro-polarimeter for the Advanced Technology Solar Telescope , 2012, Other Conferences.

[9]  F. Snik,et al.  Polarimetry from the ground up , 2007 .

[10]  Robert P. Hubbard,et al.  Instrumentation for the Advanced Technology Solar Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[11]  J. Tinbergen Accurate Optical Polarimetry on the Nasmyth Platform , 2007 .

[12]  Frans Snik Calibration strategies for instrumental polarization at the 10-5 level , 2006, SPIE Astronomical Telescopes + Instrumentation.

[13]  C. Beck,et al.  POLIS: A spectropolarimeter for the VTT and for GREGOR , 2003 .

[14]  M. Collados,et al.  Current concept for the 4m European Solar Telescope (EST) optical design , 2010, International Optical Design Conference.

[15]  Thomas G. Baur,et al.  Measurement of polarization assemblies for the Daniel K. Inouye Solar Telescope , 2015, Photonics West - Optoelectronic Materials and Devices.

[16]  Frans Snik,et al.  Design of a full-Stokes polarimeter for VLT/X-shooter , 2012, Other Conferences.

[17]  Christoph U. Keller,et al.  High precision polarimetry with the Advanced Technology Solar Telescope , 2005, SPIE Optics + Photonics.

[18]  D. Elmore,et al.  Polarimetric Littrow Spectrograph - instrument calibration and first measurements , 2005 .

[19]  Russell A. Chipman,et al.  Characterization of DKIST retarder components with polarization ray tracing , 2014, Other Conferences.

[20]  M. Collados,et al.  European Solar Telescope: project status , 2010, Astronomical Telescopes + Instrumentation.

[21]  Kjetil Dohlen,et al.  The ZIMPOL high-contrast imaging polarimeter for SPHERE: design, manufacturing, and testing , 2010, Astronomical Telescopes + Instrumentation.

[22]  Rolf Schlichenmaier,et al.  A polarization model for the German Vacuum Tower Telescope from in situ and laboratory measurements , 2005 .

[23]  Jorge Sánchez Almeida Instrumental polarization in the focal plane of telescopes. 2: Effects induced by seeing , 1992 .

[24]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[25]  A. Wittmann,et al.  The instrumental polarization of a Gregory-Coudé telescope , 1991 .

[26]  Steven Tomczyk,et al.  The polychromatic polarization modulator , 2010, Astronomical Telescopes + Instrumentation.

[27]  C. U. Keller,et al.  Instrumental polarisation at the Nasmyth focus of the E-ELT , 2013, 1312.6148.

[28]  Salvatore Scuderi,et al.  Optical design of CAOS: a high-resolution spectropolarimeter for the Catania Astrophysical Observatory 0.91-m telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[29]  Robert P. Hubbard,et al.  Construction status of the Daniel K. Inouye solar telescope , 2016, Astronomical Telescopes + Instrumentation.

[30]  Christoph U. Keller,et al.  SPEX: the spectropolarimeter for planetary exploration , 2010, Astronomical Telescopes + Instrumentation.

[31]  Christoph U. Keller,et al.  Solar polarimetry close to the diffraction limit , 2003, SPIE Astronomical Telescopes + Instrumentation.

[32]  M. Rodenhuis,et al.  The extreme polarimeter: design, performance, first results and upgrades , 2012, Other Conferences.

[33]  Alexander Bell,et al.  A two-dimensional spectropolarimeter as a first-light instrument for the Daniel K. Inouye Solar Telescope , 2014, Astronomical Telescopes and Instrumentation.

[34]  Christoph U. Keller,et al.  PEPSI spectro-polarimeter for the LBT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[35]  Christian Thalmann,et al.  Reduction of polarimetric data using Mueller calculus applied to Nasmyth instruments , 2008, Astronomical Telescopes + Instrumentation.