Hybrid multigrid methods for high-order discontinuous Galerkin discretizations

Abstract The present work develops hybrid multigrid methods for high-order discontinuous Galerkin discretizations of elliptic problems, which are, for example, a key ingredient of incompressible flow solvers in the field of computational fluid dynamics. Fast matrix-free operator evaluation on tensor product elements is used to devise a computationally efficient PDE solver. The multigrid hierarchy exploits all possibilities of geometric, polynomial, and algebraic coarsening, targeting engineering applications on complex geometries. Additionally, a transfer from discontinuous to continuous function spaces is performed within the multigrid hierarchy. This does not only further reduce the problem size of the coarse-grid problem, but also leads to a discretization most suitable for state-of-the-art algebraic multigrid methods applied as coarse-grid solver. The relevant design choices regarding the selection of optimal multigrid coarsening strategies among the various possibilities are discussed with the metric of computational costs as the driving force for algorithmic selections. We find that a transfer to a continuous function space at highest polynomial degree (or on the finest mesh), followed by polynomial and geometric coarsening, shows the best overall performance. The success of this particular multigrid strategy is due to a significant reduction in iteration counts as compared to a transfer from discontinuous to continuous function spaces at lowest polynomial degree (or on the coarsest mesh). The coarsening strategy with transfer to a continuous function space on the finest level leads to a multigrid algorithm that is robust with respect to the penalty parameter of the symmetric interior penalty method. Detailed numerical investigations are conducted for a series of examples ranging from academic test cases to more complex, practically relevant geometries. Performance comparisons to state-of-the-art methods from the literature demonstrate the versatility and computational efficiency of the proposed multigrid algorithms.

[1]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[2]  Laslo T. Diosady,et al.  Preconditioning methods for discontinuous Galerkin solutions of the Navier-Stokes equations , 2009, J. Comput. Phys..

[3]  Guido Kanschat,et al.  Fast Tensor Product Schwarz Smoothers for High-Order Discontinuous Galerkin Methods , 2019, Comput. Methods Appl. Math..

[4]  Ralf Hartmann,et al.  Smoothed Aggregation Multigrid for the Discontinuous Galerkin Method , 2009, SIAM J. Sci. Comput..

[5]  M. Deville,et al.  Spectral-element preconditioners for the uzawa pressure operator applied to incompressible flows , 1994 .

[6]  Martin Kronbichler,et al.  Modern discontinuous Galerkin methods for the simulation of transitional and turbulent flows in biomedical engineering: A comprehensive LES study of the FDA benchmark nozzle model. , 2019, International journal for numerical methods in biomedical engineering.

[7]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[8]  Dmitri Kuzmin,et al.  Scale separation in fast hierarchical solvers for discontinuous Galerkin methods , 2015, Appl. Math. Comput..

[9]  Guido Kanschat,et al.  Multilevel methods for discontinuous Galerkin FEM on locally refined meshes , 2004 .

[10]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[11]  W. Couzy,et al.  A fast Schur complement method for the spectral element discretization of the incompressible Navier-Stokes equations , 1995 .

[12]  M. Y. Hussaini,et al.  An efficient implicit discontinuous spectral Galerkin method , 2001 .

[13]  Jean-François Remacle,et al.  Hierarchic multigrid iteration strategy for the discontinuous Galerkin solution of the steady Euler equations , 2006 .

[14]  Brian T. Helenbrook,et al.  A two-fluid spectral-element method , 2001 .

[15]  Martin Kronbichler,et al.  A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow , 2016, J. Comput. Phys..

[16]  Brian T. Helenbrook,et al.  Application of p-Multigrid to Discontinuous Galerkin Formulations of the Poisson Equation , 2005 .

[17]  William Gropp,et al.  Performance Modeling and Tuning of an Unstructured Mesh CFD Application , 2000, ACM/IEEE SC 2000 Conference (SC'00).

[18]  Brian T. Helenbrook,et al.  Solving Discontinuous Galerkin Formulations of Poisson's Equation using Geometric and p Multigrid , 2008 .

[19]  Ludmil T. Zikatanov,et al.  Two‐level preconditioning of discontinuous Galerkin approximations of second‐order elliptic equations , 2006, Numer. Linear Algebra Appl..

[20]  Francesco Bassi,et al.  Spectral p‐multigrid discontinuous Galerkin solution of the Navier–Stokes equations , 2011 .

[21]  P. Tesini,et al.  High‐order accurate p‐multigrid discontinuous Galerkin solution of the Euler equations , 2009 .

[22]  Martin Kronbichler,et al.  A Flexible, Parallel, Adaptive Geometric Multigrid Method for FEM , 2019, ACM Trans. Math. Softw..

[23]  Martin Kronbichler,et al.  Efficiency of high‐performance discontinuous Galerkin spectral element methods for under‐resolved turbulent incompressible flows , 2018, 1802.01439.

[24]  J. Kópházi,et al.  P-multigrid expansion of hybrid multilevel solvers for discontinuous Galerkin finite element discrete ordinate (DG-FEM-SN) diffusion synthetic acceleration (DSA) of radiation transport algorithms , 2017 .

[25]  Per-Olof Persson,et al.  Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods , 2017, J. Comput. Phys..

[26]  Martin Kronbichler,et al.  Multigrid for Matrix-Free High-Order Finite Element Computations on Graphics Processors , 2019, ACM Trans. Parallel Comput..

[27]  P. F. Fischer,et al.  An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows , 1998 .

[28]  David L. Darmofal,et al.  DEVELOPMENT OF A HIGHER-ORDER SOLVER FOR AERODYNAMIC APPLICATIONS , 2004 .

[29]  Ludmil T. Zikatanov,et al.  A Uniform Additive Schwarz Preconditioner for High-Order Discontinuous Galerkin Approximations of Elliptic Problems , 2017, J. Sci. Comput..

[30]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[31]  Katharina Kormann,et al.  Fast Matrix-Free Evaluation of Discontinuous Galerkin Finite Element Operators , 2017, ACM Trans. Math. Softw..

[32]  Rainald Löhner,et al.  A p-multigrid discontinuous Galerkin method for the Euler equations on unstructured grids , 2006 .

[33]  Guido Kanschat,et al.  Adaptive Multilevel Methods with Local Smoothing for H1- and Hcurl-Conforming High Order Finite Element Methods , 2011, SIAM J. Sci. Comput..

[34]  Ulrich Steinseifer,et al.  FDA Benchmark Medical Device Flow Models for CFD Validation , 2017, ASAIO journal.

[35]  Brian T. Helenbrook,et al.  Analysis of ``p''-Multigrid for Continuous and Discontinuous Finite Element Discretizations , 2003 .

[36]  Thomas A. Manteuffel,et al.  Algebraic multigrid for higher-order finite elements , 2005 .

[37]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[38]  P. Fischer,et al.  High-Order Methods for Incompressible Fluid Flow , 2002 .

[39]  Anthony T. Patera,et al.  Spectral element multigrid. I. Formulation and numerical results , 1987 .

[40]  David L. Darmofal,et al.  p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2005 .

[41]  Hari Sundar,et al.  Parallel geometric-algebraic multigrid on unstructured forests of octrees , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[42]  Steffen Müthing,et al.  Automatic Code Generation for High-performance Discontinuous Galerkin Methods on Modern Architectures , 2018, ACM Trans. Math. Softw..

[43]  John R. Rice,et al.  Direct solution of partial difference equations by tensor product methods , 1964 .

[44]  Steffen Müthing,et al.  Matrix-free multigrid block-preconditioners for higher order Discontinuous Galerkin discretisations , 2018, J. Comput. Phys..

[45]  Esteban Ferrer,et al.  A p-multigrid strategy with anisotropic p-adaptation based on truncation errors for high-order discontinuous Galerkin methods , 2018, J. Comput. Phys..

[46]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[47]  Dimitri J. Mavriplis,et al.  High-order discontinuous Galerkin methods using an hp-multigrid approach , 2006, J. Comput. Phys..

[48]  Immo Huismann,et al.  Scaling to the stars - a linearly scaling elliptic solver for p-multigrid , 2019, J. Comput. Phys..

[49]  Timothy C. Warburton,et al.  GPU accelerated spectral finite elements on all-hex meshes , 2016, J. Comput. Phys..

[50]  Jonathan J. Hu,et al.  Parallel multigrid smoothing: polynomial versus Gauss--Seidel , 2003 .

[51]  López Santamaría,et al.  Programa didáctico para el análisis dinámico de estructuras bidimensionales por el método de los elementos finitos , 2020 .

[52]  Jacob B. Schroder,et al.  Smoothed aggregation multigrid solvers for high-order discontinuous Galerkin methods for elliptic problems , 2011, J. Comput. Phys..

[53]  C. Lasser,et al.  Overlapping preconditioners for discontinuous Galerkin approximations of second order problems , .

[54]  Niklas Fehn,et al.  A Hermite-like basis for faster matrix-free evaluation of interior penalty discontinuous Galerkin operators , 2019, ArXiv.

[55]  P. Schlatter,et al.  Towards Adaptive Mesh Refinement for the Spectral Element Solver Nek5000 , 2019, Direct and Large-Eddy Simulation XI.

[56]  Constantine Bekas,et al.  An extreme-scale implicit solver for complex PDEs: highly heterogeneous flow in earth's mantle , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[57]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[58]  David Wells,et al.  The deal.II library, Version 9.0 , 2018, J. Num. Math..

[59]  Jonathan J. Hu,et al.  ML 5.0 Smoothed Aggregation Users's Guide , 2006 .

[60]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[61]  Barbara I. Wohlmuth,et al.  Performance and Scalability of Hierarchical Hybrid Multigrid Solvers for Stokes Systems , 2015, SIAM J. Sci. Comput..

[62]  Paola F. Antonietti,et al.  Multigrid Algorithms for hp-Discontinuous Galerkin Discretizations of Elliptic Problems , 2013, SIAM J. Numer. Anal..

[63]  Paul Fischer,et al.  Hybrid Schwarz-Multigrid Methods for the Spectral Element Method: Extensions to Navier-Stokes , 2005 .

[64]  S. Scott Collis,et al.  Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order , 2014, Computational Geosciences.

[65]  Guido Kanschat,et al.  Robust smoothers for high-order discontinuous Galerkin discretizations of advection-diffusion problems , 2008 .

[66]  Xiangmin Jiao,et al.  A hybrid geometric + algebraic multigrid method with semi-iterative smoothers , 2014, Numer. Linear Algebra Appl..

[67]  Miguel R. Visbal,et al.  An implicit discontinuous Galerkin method for the unsteady compressible Navier–Stokes equations , 2009 .

[68]  Peter Bastian,et al.  A fully-coupled discontinuous Galerkin method for two-phase flow in porous media with discontinuous capillary pressure , 2013, Computational Geosciences.

[69]  Yvon Maday,et al.  Spectral element multigrid. II. Theoretical justification , 1988, J. Sci. Comput..

[70]  Jörg Stiller,et al.  Nonuniformly Weighted Schwarz Smoothers for Spectral Element Multigrid , 2015, J. Sci. Comput..

[71]  Michel Schanen,et al.  On the Strong Scaling of the Spectral Element Solver Nek5000 on Petascale Systems , 2016, EASC.

[72]  Carsten Burstedde,et al.  p4est: Scalable Algorithms for Parallel Adaptive Mesh Refinement on Forests of Octrees , 2011, SIAM J. Sci. Comput..

[73]  Brian T. Helenbrook,et al.  Coupling p-multigrid to geometric multigrid for discontinuous Galerkin formulations of the convection-diffusion equation , 2010, J. Comput. Phys..

[74]  Per-Olof Persson,et al.  Newton-GMRES Preconditioning for Discontinuous Galerkin Discretizations of the Navier--Stokes Equations , 2008, SIAM J. Sci. Comput..

[75]  Katharina Kormann,et al.  A generic interface for parallel cell-based finite element operator application , 2012 .

[76]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[77]  Michel Deville,et al.  Chebyshev pseudospectral solution of second-order elliptic equations with finite element preconditioning , 1985 .

[78]  Jörg Stiller,et al.  Robust Multigrid for Cartesian Interior Penalty DG Formulations of the Poisson Equation in 3D , 2016, ArXiv.

[79]  Ulrich Rüde,et al.  Towards Textbook Efficiency for Parallel Multigrid , 2015 .

[80]  Francesco Bassi,et al.  Numerical Solution of the Euler Equations with a Multiorder Discontinuous Finite Element Method , 2003 .

[81]  S. Sherwin,et al.  From h to p efficiently: Strategy selection for operator evaluation on hexahedral and tetrahedral elements , 2011 .

[82]  Pieter W. Hemker,et al.  Two-Level Fourier Analysis of a Multigrid Approach for Discontinuous Galerkin Discretization , 2003, SIAM J. Sci. Comput..

[83]  Dimitri J. Mavriplis,et al.  Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier-Stokes equations , 2009, J. Comput. Phys..

[84]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[85]  Robert Scheichl,et al.  Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems , 2012, Numer. Linear Algebra Appl..

[86]  Pher Errol Balde Quinay,et al.  Implicit nonlinear wave simulation with 1.08T DOF and 0.270T unstructured finite elements to enhance comprehensive earthquake simulation , 2015, SC15: International Conference for High Performance Computing, Networking, Storage and Analysis.

[87]  Paul F. Fischer,et al.  Hybrid Multigrid/Schwarz Algorithms for the Spectral Element Method , 2005, J. Sci. Comput..

[88]  Martin Kronbichler,et al.  A Performance Comparison of Continuous and Discontinuous Galerkin Methods with Fast Multigrid Solvers , 2016, SIAM J. Sci. Comput..

[89]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[90]  Susanne C. Brenner,et al.  Multigrid methods for the symmetric interior penalty method on graded meshes , 2009, Numer. Linear Algebra Appl..

[91]  Will Pazner,et al.  Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods , 2019, SIAM J. Sci. Comput..

[92]  Jed Brown,et al.  Efficient Nonlinear Solvers for Nodal High-Order Finite Elements in 3D , 2010, J. Sci. Comput..

[93]  David A. Kopriva,et al.  Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers , 2009 .

[94]  B. Helenbrook,et al.  Analysis of Implicit Time-Advancing p-Multigrid Schemes for Discontinuous Galerkin Discretizations of the Euler Equations , 2016 .

[95]  Paul Fischer,et al.  An Overlapping Schwarz Method for Spectral Element Solution of the Incompressible Navier-Stokes Equations , 1997 .

[96]  Jörg Stiller,et al.  Robust multigrid for high-order discontinuous Galerkin methods: A fast Poisson solver suitable for high-aspect ratio Cartesian grids , 2016, J. Comput. Phys..

[97]  Hari Sundar,et al.  Comparison of multigrid algorithms for high‐order continuous finite element discretizations , 2014, Numer. Linear Algebra Appl..

[98]  Richard T. Mills,et al.  Manycore Parallel Computing for a Hybridizable Discontinuous Galerkin Nested Multigrid Method , 2019, SIAM J. Sci. Comput..

[99]  Hari Sundar,et al.  FFT, FMM, or Multigrid? A comparative Study of State-Of-the-Art Poisson Solvers for Uniform and Nonuniform Grids in the Unit Cube , 2014, SIAM J. Sci. Comput..

[100]  Michel O. Deville,et al.  Finite-Element Preconditioning for Pseudospectral Solutions of Elliptic Problems , 1990, SIAM J. Sci. Comput..

[101]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study in 3D , 2016, J. Sci. Comput..

[102]  S. Rebay,et al.  Efficient p‐multigrid discontinuous Galerkin solver for complex viscous flows on stretched grids , 2014 .

[103]  S. C. Brenner,et al.  Convergence of Multigrid Algorithms for Interior Penalty Methods , 2005 .

[104]  Christian J. Roth,et al.  Gas exchange mechanisms in preterm infants on HFOV – a computational approach , 2018, Scientific Reports.

[105]  William Gropp,et al.  FFT, FMM, and Multigrid on the Road to Exascale: performance challenges and opportunities , 2020, J. Parallel Distributed Comput..

[106]  Steffen Müthing,et al.  High-performance Implementation of Matrix-free High-order Discontinuous Galerkin Methods , 2017, ArXiv.

[107]  Koen Hillewaert,et al.  Development of the discontinuous Galerkin method for high-resolution, large scale CFD and acoustics in industrial geometries , 2013 .