An idealized model of interaction between fronds of the large seaweed Durvillaea antarctica

[1]  S. A. Wainwright,et al.  Mechanical adaptations of a giant kelp , 1977 .

[2]  G. R. South,et al.  Influence of wave action and latitute on morphology and standing crop of New Zealand Durvillaea antarctica (Chamisso) Hariot (Phaeophyta, Durvilleales) , 1979 .

[3]  T. Flash,et al.  The coordination of arm movements: an experimentally confirmed mathematical model , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  Mark W. Denny,et al.  Nearshore Biomechanics. (Book Reviews: Biology and the Mechanics of the Wave-Swept Environment) , 1988 .

[5]  M. Tegner,et al.  Storm Wave Induced Mortality of Giant Kelp, Macrocystis pyrifera, in Southern , 1989 .

[6]  E. Carrington Drag and dislodgment of an intertidal macroalga: consequences of morphological variation in Mastocarpus papillatus Kützing , 1990 .

[7]  Mark W. Denny,et al.  Mechanical Consequences of Size in Wave‐Swept Algae , 1994 .

[8]  E. C. Bell,et al.  Quantifying «wave exposure»: a simple device for recording maximum velocity and results of its use at several field sites , 1994 .

[9]  W. C. O'Reilly,et al.  Effects of Southern California Kelp Beds on Waves , 1995 .

[10]  I. Akatsuka Biology of Economic Algae , 1995 .

[11]  Denny,et al.  Wave-induced forces on the giant kelp Macrocystis pyrifera (Agardh): field test of a computational model , 1996, The Journal of experimental biology.

[12]  M. Mork Wave Attenuation due to Bottom Vegetation , 1996 .

[13]  R. Guza,et al.  Discussion and Closure: Effects of Southern California Kelp Beds on Waves , 1996 .

[14]  Denny,et al.  Flow and flexibility. I. Effects Of size, shape and stiffness in determining wave forces on the stipitate kelps eisenia arborea and pterygophora californica , 1997, The Journal of experimental biology.

[15]  Denny,et al.  Flow and flexibility. II. The roles of size and shape in determining wave forces on the bull kelp nereocystis luetkeana , 1997, The Journal of experimental biology.

[16]  Mark W. Denny,et al.  The menace of momentum: Dynamic forces on flexible organisms , 1998 .

[17]  B. Gaylord Detailing agents of physical disturbance: wave-induced velocities and accelerations on a rocky shore , 1999 .

[18]  Eugene M. Izhikevich,et al.  Weakly Connected Quasi-periodic Oscillators, FM Interactions, and Multiplexing in the Brain , 1999, SIAM J. Appl. Math..

[19]  C. Hurd,et al.  WATER MOTION, MARINE MACROALGAL PHYSIOLOGY, AND PRODUCTION , 2000, Journal of phycology.

[20]  B. Gaylord Biological implications of surf‐zone flow complexity , 2000 .

[21]  M. J. Smith,et al.  Water motion relative to subtidal kelp fronds , 2001 .

[22]  J. Falnes Ocean Waves and Oscillating Systems , 2002 .

[23]  C. Hurd,et al.  Field measurement of the dynamics of the bull kelp Durvillaea antarctica (Chamisso) Heriot , 2002 .

[24]  D. Schiel,et al.  Wave-related mortality in zygotes of habitat-forming algae from different exposures in southern New Zealand: the importance of ‘stickability’ , 2003 .

[25]  M. D. Stokes,et al.  Extreme water velocities: Topographical amplification of wave‐induced flow in the surf zone of rocky shores , 2003 .

[26]  Craig L. Stevens,et al.  Boundary-layers around bladed aquatic macrophytes , 1997, Hydrobiologia.