Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder
暂无分享,去创建一个
James L. Gole | Clemens Burda | Anna Cristina S. Samia | Yongbing Lou | J. Gole | C. Burda | X. Chen | A. Samia | Yanlong Lou | Xiaobo Chen | A. Samia | Xiaobo Chen | Yongbing Lou
[1] W. Jenks,et al. Isotope studies of photocatalysis TiO2-mediated degradation of dimethyl phenylphosphonate , 2003 .
[2] A. Alivisatos. Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .
[3] Harland G. Tompkins,et al. Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .
[4] Fujio Izumi,et al. Raman spectrum of anatase, TiO2 , 1978 .
[5] W. Ingler,et al. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.
[6] Akira Fujishima,et al. Titanium dioxide photocatalysis , 2000 .
[7] J. Herrmann,et al. Photocatalytic degradation pathway of methylene blue in water , 2001 .
[8] M. Gu,et al. Preparation, structure and properties of TiO2–PVP hybrid films , 2000 .
[9] Louis E. Brus,et al. Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .
[10] Francis Levy,et al. Electrical and optical properties of TiO2 anatase thin films , 1994 .
[11] Akira Fujishima,et al. Recent topics in photoelectrochemistry: achievements and future prospects , 2000 .
[12] F. Lévy,et al. Growth and Raman spectroscopic characterization of TiO2 anatase single crystals , 1993 .
[13] Joseph Dvorak,et al. Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3 , 2000 .
[14] J. Gole,et al. Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .
[15] M. Grätzel,et al. Molecular and supramolecular surface modification of nanocrystalline TiO2 films: charge-separating and charge-injecting devices , 2007 .
[16] Jimmy C. Yu,et al. Photocatalytic Activity of Rutile Ti1−xSnxO2Solid Solutions☆ , 1999 .
[17] S. Musić,et al. The effects of crystal size on the Raman spectra of nanophase TiO2 , 1999 .
[18] Takehiko Shimanouchi,et al. Tables of molecular vibrational frequencies. Consolidated volume II , 1972 .
[19] J. Rodríguez,et al. Adsorption of NO2 on Rh(111) and Pd/Rh(111): photoemission studies , 1999 .
[20] Jiaguo Yu,et al. Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .
[21] L. DeLouise,et al. Adsorption and desorption of no from Rh{111} and Rh{331} surfaces , 1985 .
[22] R. Asahi,et al. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.
[23] Christopher B. Murray,et al. Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .
[24] C. Brinker,et al. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .
[25] James A. Anderson,et al. Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts , 2000 .
[26] P. Wright,et al. Poly(tetraethylene glycol malonate)–titanium oxide hybrid materials by sol–gel methods , 1998 .
[27] M. Grätzel. Photoelectrochemical cells : Materials for clean energy , 2001 .
[28] Á. D. Pino,et al. Depth profiling characterisation of the surface layer obtained by pulsed Nd :YAG laser irradiation of titanium in nitrogen , 2003 .
[29] S. Cai,et al. Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes , 1999 .
[30] Michael P. Shea,et al. Raman excitation profile of a sterically protected diphosphene [ArPPAr] , 2003 .
[31] M. El-Sayed,et al. High-density femtosecond transient absorption spectroscopy of semiconductor nanoparticles. A tool to investigate surface quality , 2000 .
[32] D. K. Kim,et al. Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4 , 1997 .
[33] Tunable surface oxidation states in Si/SiO2 nanostructures prepared from Si/SiQ2 mixtures and phenol hydroxylation activity. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.
[34] P. P. Lottici,et al. Raman study of nanosized titania prepared by sol–gel route , 1998 .
[35] Andrew Mills,et al. An overview of semiconductor photocatalysis , 1997 .
[36] J. Yates,et al. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .
[37] J. Gole,et al. Nanocatalysis: Selective Conversion of Ethanol to Acetaldehyde Using Mono-atomically Dispersed Copper on Silica Nanospheres , 2001 .
[38] T. Takahashi,et al. Correlation between crystallographic orientations and Raman spectra of TiO2 sputtered films with changing degrees of plasma exposure , 2003 .
[39] D. Bahnemann,et al. A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity , 2000 .
[40] S. Cai,et al. The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode , 1999 .
[41] Shinri Sato,et al. Photocatalytic activity of NOx-doped TiO2 in the visible light region , 1986 .
[42] James L. Gole,et al. Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale , 2004 .
[43] Shinri Sato. Photocatalysts Sensitive to Visible Light , 2002, Science.
[44] Lucien Diego Laude,et al. Micro-Raman spectroscopy study of surface transformations induced by excimer laser irradiation of TiO2 , 2003 .
[45] S. Martin,et al. Environmental Applications of Semiconductor Photocatalysis , 1995 .