Formation of Oxynitride as the Photocatalytic Enhancing Site in Nitrogen‐Doped Titania Nanocatalysts: Comparison to a Commercial Nanopowder

A nitrogen-doped TiO2 nanocolloid has been successfully prepared and its properties compared with the commercially available TiO2 nanomaterial, Degussa P25. Several characterization techniques, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron spectroscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, Raman scattering, and UV-visible reflectance spectra, are combined in order to determine the crystal phase and grain size, shape, degree of nitrogen incorporation, and nature of the resultant oxynitride chemical bonding on the surface and in the bulk. The high relative photocatalytic activity of the nitrogen doped-TiO2 nanocolloid is evaluated through a study of the decomposition of methylene blue under visible light excitation. The ease and degree of substitutional-insertional nitrogen doping is held accountable for the significant increase in photocatalytic activity in the porous nanocolloid versus the nitrided commercial nanopowder. It is suggested that the nitrogen incorporation produces an NO bonding region as evidenced by the resulting XPS spectrum.

[1]  W. Jenks,et al.  Isotope studies of photocatalysis TiO2-mediated degradation of dimethyl phenylphosphonate , 2003 .

[2]  A. Alivisatos Perspectives on the Physical Chemistry of Semiconductor Nanocrystals , 1996 .

[3]  Harland G. Tompkins,et al.  Titanium nitride oxidation chemistry: An x‐ray photoelectron spectroscopy study , 1992 .

[4]  Fujio Izumi,et al.  Raman spectrum of anatase, TiO2 , 1978 .

[5]  W. Ingler,et al.  Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2 , 2002, Science.

[6]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[7]  J. Herrmann,et al.  Photocatalytic degradation pathway of methylene blue in water , 2001 .

[8]  M. Gu,et al.  Preparation, structure and properties of TiO2–PVP hybrid films , 2000 .

[9]  Louis E. Brus,et al.  Luminescence Photophysics in Semiconductor Nanocrystals , 1999 .

[10]  Francis Levy,et al.  Electrical and optical properties of TiO2 anatase thin films , 1994 .

[11]  Akira Fujishima,et al.  Recent topics in photoelectrochemistry: achievements and future prospects , 2000 .

[12]  F. Lévy,et al.  Growth and Raman spectroscopic characterization of TiO2 anatase single crystals , 1993 .

[13]  Joseph Dvorak,et al.  Reaction of NO2 with Zn and ZnO: Photoemission, XANES, and Density Functional Studies on the Formation of NO3 , 2000 .

[14]  J. Gole,et al.  Enhanced Nitrogen Doping in TiO2 Nanoparticles , 2003 .

[15]  M. Grätzel,et al.  Molecular and supramolecular surface modification of nanocrystalline TiO2 films: charge-separating and charge-injecting devices , 2007 .

[16]  Jimmy C. Yu,et al.  Photocatalytic Activity of Rutile Ti1−xSnxO2Solid Solutions☆ , 1999 .

[17]  S. Musić,et al.  The effects of crystal size on the Raman spectra of nanophase TiO2 , 1999 .

[18]  Takehiko Shimanouchi,et al.  Tables of molecular vibrational frequencies. Consolidated volume II , 1972 .

[19]  J. Rodríguez,et al.  Adsorption of NO2 on Rh(111) and Pd/Rh(111): photoemission studies , 1999 .

[20]  Jiaguo Yu,et al.  Effects of F- Doping on the Photocatalytic Activity and Microstructures of Nanocrystalline TiO2 Powders , 2002 .

[21]  L. DeLouise,et al.  Adsorption and desorption of no from Rh{111} and Rh{331} surfaces , 1985 .

[22]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[23]  Christopher B. Murray,et al.  Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies , 2000 .

[24]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[25]  James A. Anderson,et al.  Determination of the nature and reactivity of copper sites in Cu–TiO2 catalysts , 2000 .

[26]  P. Wright,et al.  Poly(tetraethylene glycol malonate)–titanium oxide hybrid materials by sol–gel methods , 1998 .

[27]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[28]  Á. D. Pino,et al.  Depth profiling characterisation of the surface layer obtained by pulsed Nd :YAG laser irradiation of titanium in nitrogen , 2003 .

[29]  S. Cai,et al.  Photoelectrochemical properties of metal-ion-doped TiO2 nanocrystalline electrodes , 1999 .

[30]  Michael P. Shea,et al.  Raman excitation profile of a sterically protected diphosphene [ArPPAr] , 2003 .

[31]  M. El-Sayed,et al.  High-density femtosecond transient absorption spectroscopy of semiconductor nanoparticles. A tool to investigate surface quality , 2000 .

[32]  D. K. Kim,et al.  Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4 , 1997 .

[33]  Tunable surface oxidation states in Si/SiO2 nanostructures prepared from Si/SiQ2 mixtures and phenol hydroxylation activity. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  P. P. Lottici,et al.  Raman study of nanosized titania prepared by sol–gel route , 1998 .

[35]  Andrew Mills,et al.  An overview of semiconductor photocatalysis , 1997 .

[36]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[37]  J. Gole,et al.  Nanocatalysis: Selective Conversion of Ethanol to Acetaldehyde Using Mono-atomically Dispersed Copper on Silica Nanospheres , 2001 .

[38]  T. Takahashi,et al.  Correlation between crystallographic orientations and Raman spectra of TiO2 sputtered films with changing degrees of plasma exposure , 2003 .

[39]  D. Bahnemann,et al.  A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity , 2000 .

[40]  S. Cai,et al.  The photoelectrochemistry of transition metal-ion-doped TiO2 nanocrystalline electrodes and higher solar cell conversion efficiency based on Zn2+-doped TiO2 electrode , 1999 .

[41]  Shinri Sato,et al.  Photocatalytic activity of NOx-doped TiO2 in the visible light region , 1986 .

[42]  James L. Gole,et al.  Highly Efficient Formation of Visible Light Tunable TiO2-xNx Photocatalysts and Their Transformation at the Nanoscale , 2004 .

[43]  Shinri Sato Photocatalysts Sensitive to Visible Light , 2002, Science.

[44]  Lucien Diego Laude,et al.  Micro-Raman spectroscopy study of surface transformations induced by excimer laser irradiation of TiO2 , 2003 .

[45]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .