CENTER-ADJUSTED INFERENCE FOR A NONPARAMETRIC BAYESIAN RANDOM EFFECT DISTRIBUTION.

Dirichlet process (DP) priors are a popular choice for semiparametric Bayesian random effect models. The fact that the DP prior implies a non-zero mean for the random effect distribution creates an identifiability problem that complicates the interpretation of, and inference for, the fixed effects that are paired with the random effects. Similarly, the interpretation of, and inference for, the variance components of the random effects also becomes a challenge. We propose an adjustment of conventional inference using a post-processing technique based on an analytic evaluation of the moments of the random moments of the DP. The adjustment for the moments of the DP can be conveniently incorporated into Markov chain Monte Carlo simulations at essentially no additional computational cost. We conduct simulation studies to evaluate the performance of the proposed inference procedure in both a linear mixed model and a logistic linear mixed effect model. We illustrate the method by applying it to a prostate specific antigen dataset. We provide an R function that allows one to implement the proposed adjustment in a post-processing step of posterior simulation output, without any change to the posterior simulation itself.

[1]  N. Hjort,et al.  Exact Inference for Random Dirichlet Means , 2005 .

[2]  M. Newton,et al.  Bayesian Inference for Semiparametric Binary Regression , 1996 .

[3]  Ming-Hui Chen,et al.  Sufficient and necessary conditions on the propriety of posterior distributions for generalized linear mixed models , 2002 .

[4]  Purushottam W. Laud,et al.  Bayesian Nonparametric Inference for Random Distributions and Related Functions , 1999 .

[5]  S. MacEachern,et al.  A semiparametric Bayesian model for randomised block designs , 1996 .

[6]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[7]  G. Verbeke,et al.  A Linear Mixed-Effects Model with Heterogeneity in the Random-Effects Population , 1996 .

[8]  R. Kass,et al.  Reference Bayesian Methods for Generalized Linear Mixed Models , 2000 .

[9]  J G Ibrahim,et al.  A semi-parametric Bayesian approach to generalized linear mixed models. , 1998, Statistics in medicine.

[10]  Alan E. Gelfand,et al.  A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models , 2002 .

[11]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[12]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[13]  Means of a Dirichlet process and multiple hypergeometric functions , 2004, math/0410151.

[14]  A. Guglielmi,et al.  A stochastic equation for the law of the random Dirichlet variance , 2006 .

[15]  A. Gelfand,et al.  On nonparametric Bayesian inference for the distribution of a random sample , 1995 .

[16]  J G Ibrahim,et al.  A semiparametric Bayesian approach to the random effects model. , 1998, Biometrics.

[17]  Ranjini Natarajan,et al.  Gibbs Sampling with Diffuse Proper Priors: A Valid Approach to Data-Driven Inference? , 1998 .

[18]  Peter Müller,et al.  A Bayesian Semiparametric Survival Model with Longitudinal Markers , 2010, Biometrics.

[19]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[20]  A. Gelfand,et al.  Efficient parametrisations for normal linear mixed models , 1995 .