Intravenously Administered Novel Liposomes, DCL64, Deliver Oligonucleotides to Cerebellar Purkinje Cells

[1]  H. Paulson,et al.  Oligonucleotide therapy mitigates disease in spinocerebellar ataxia type 3 mice , 2018, Annals of neurology.

[2]  Patrizia Rizzu,et al.  A Pentanucleotide ATTTC Repeat Insertion in the Non-coding Region of DAB1, Mapping to SCA37, Causes Spinocerebellar Ataxia. , 2017, American journal of human genetics.

[3]  T. Ashizawa,et al.  RNA toxicity and foci formation in microsatellite expansion diseases. , 2017, Current opinion in genetics & development.

[4]  Daniel R. Scoles,et al.  Antisense oligonucleotide therapy for spinocerebellar ataxia type 2 , 2017, Nature.

[5]  H. van Attikum,et al.  Antisense oligonucleotide-mediated exon skipping as a strategy to reduce proteolytic cleavage of ataxin-3 , 2016, Scientific Reports.

[6]  D. Corey Synthetic Nucleic Acids and Treatment of Neurological Diseases. , 2016, JAMA neurology.

[7]  B. Davidson,et al.  RNAi prevents and reverses phenotypes induced by mutant human ataxin‐1 , 2016, Annals of neurology.

[8]  Tin Wui Wong,et al.  Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury , 2016, Drug delivery.

[9]  C. Gomez,et al.  An miRNA-mediated therapy for SCA6 blocks IRES-driven translation of the CACNA1A second cistron , 2016, Science Translational Medicine.

[10]  M. Hällbrink,et al.  Role of scavenger receptors in peptide-based delivery of plasmid DNA across a blood-brain barrier model. , 2016, International journal of pharmaceutics.

[11]  T. Bird Hereditary Ataxia Overview , 2016 .

[12]  A. Domínguez-Rodríguez Measuring soluble CD40 ligand: it is a fancy prognostic biomarker in STEMI-patients? , 2016, Annals of translational medicine.

[13]  V. Shakkottai,et al.  Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. , 2016, Annals of translational medicine.

[14]  Paola Giunti,et al.  Long-term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study , 2015, The Lancet Neurology.

[15]  E. Wagner,et al.  Peptide-like Polymers Exerting Effective Glioma-Targeted siRNA Delivery and Release for Therapeutic Application. , 2015, Small.

[16]  Zhenzhong Zhang,et al.  Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles , 2015, Journal of drug targeting.

[17]  B. Davidson,et al.  Nonallele specific silencing of ataxin-7 improves disease phenotypes in a mouse model of SCA7. , 2014, Molecular therapy : the journal of the American Society of Gene Therapy.

[18]  Dawen Dong,et al.  Tumor-targeting dual peptides-modified cationic liposomes for delivery of siRNA and docetaxel to gliomas. , 2014, Biomaterials.

[19]  Daniel R. Scoles,et al.  Consensus Paper: Pathological Mechanisms Underlying Neurodegeneration in Spinocerebellar Ataxias , 2013, The Cerebellum.

[20]  Sooyeon Lee,et al.  Liposomes to Target Peripheral Neurons and Schwann Cells , 2013, PloS one.

[21]  V. Shakkottai,et al.  Clinical neurogenetics: autosomal dominant spinocerebellar ataxia. , 2013, Neurologic clinics.

[22]  H. Paulson,et al.  Silencing mutant ATXN3 expression resolves molecular phenotypes in SCA3 transgenic mice. , 2013, Molecular therapy : the journal of the American Society of Gene Therapy.

[23]  Svetlana Gelperina,et al.  Adsorption of plasma proteins on uncoated PLGA nanoparticles. , 2013, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[24]  O. Khorkova,et al.  Oligonucleotides for upregulating gene expression. , 2013, Pharmaceutical patent analyst.

[25]  T. Ashizawa,et al.  Transgenic Models of Spinocerebellar Ataxia Type 10: Modeling a Repeat Expansion Disorder , 2012, Genes.

[26]  Pawel M. Switonski,et al.  An evaluation of oligonucleotide-based therapeutic strategies for polyQ diseases , 2012, BMC Molecular Biology.

[27]  T. Ashizawa,et al.  Transgenic mice with SCA10 pentanucleotide repeats show motor phenotype and susceptibility to seizure: A toxic RNA gain‐of‐function model , 2012, Journal of neuroscience research.

[28]  H. Mizusawa,et al.  Efficient in vivo delivery of siRNA into brain capillary endothelial cells along with endogenous lipoprotein. , 2011, Molecular therapy : the journal of the American Society of Gene Therapy.

[29]  W. Banks,et al.  Transport across the Blood-Brain Barrier of Pluronic Leptin , 2010, Journal of Pharmacology and Experimental Therapeutics.

[30]  L. B. Thomsen,et al.  Macromolecular drug transport into the brain using targeted therapy , 2010, Journal of neurochemistry.

[31]  J. Kreuter,et al.  Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. , 2010, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[32]  Saroj P. Mathupala,et al.  Delivery of small-interfering RNA (siRNA) to the brain , 2009, Expert opinion on therapeutic patents.

[33]  Michel Demeule,et al.  Identification and Design of Peptides as a New Drug Delivery System for the Brain , 2008, Journal of Pharmacology and Experimental Therapeutics.

[34]  J. Kreuter,et al.  Use of Nanoparticles for Cerebral Cancer , 2008 .

[35]  J. Kreuter,et al.  Use of nanoparticles for cerebral cancer. , 2008, Tumori.

[36]  J. Belmont,et al.  Liposome-incorporated Grb2 antisense oligodeoxynucleotide increases the survival of mice bearing bcr-abl-positive leukemia xenografts. , 2007, International journal of oncology.

[37]  R. Boado Blood–brain Barrier Transport of Non-viral Gene and RNAi Therapeutics , 2007, Pharmaceutical Research.

[38]  W. Pardridge shRNA and siRNA delivery to the brain. , 2007, Advanced drug delivery reviews.

[39]  R. Müller,et al.  Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[40]  R. Müller,et al.  Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN). , 2005, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[41]  J. Jain,et al.  Scavenger receptor class B type I expression and elemental analysis in cerebellum and parietal cortex regions of the Alzheimer's disease brain , 2002, Journal of the Neurological Sciences.

[42]  M. Hashida,et al.  Effects of erythrocytes and serum proteins on lung accumulation of lipoplexes containing cholesterol or DOPE as a helper lipid in the single-pass rat lung perfusion system. , 2001, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[43]  A. Tari,et al.  Safety, pharmacokinetics, and tissue distribution of liposomal P-ethoxy antisense oligonucleotides targeted to Bcl-2. , 1999, The Journal of pharmacology and experimental therapeutics.

[44]  M. Ogris,et al.  PEGylated DNA/transferrin–PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery , 1999, Gene Therapy.

[45]  L. Fenart,et al.  A New Function for the LDL Receptor: Transcytosis of LDL across the Blood–Brain Barrier , 1997, The Journal of cell biology.

[46]  K. Goto,et al.  Human Apolipoprotein E Receptor 2 , 1996, The Journal of Biological Chemistry.

[47]  R. Cecchelli,et al.  Low‐Density Lipoprotein Receptor on Endothelium of Brain Capillaries , 1989, Journal of neurochemistry.

[48]  M. Dehouck,et al.  Upregulation of the low density lipoprotein receptor at the blood-brain barrier: intercommunications between brain capillary endothelial cells and astrocytes , 1987, The Journal of cell biology.

[49]  W. Pardridge The blood-brain barrier: Bottleneck in brain drug development , 2005, NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics.

[50]  D. Sah,et al.  Novel Therapeutic Modalities to Address Nondrugable Protein Interaction Targets , 2009, Neuropsychopharmacology.