Two Classes of Symmetric Boolean Functions With Optimum Algebraic Immunity: Construction and Analysis

This paper discusses two classes of symmetric Boolean functions. For each class, a necessary and sufficient condition for having optimum algebraic immunity is proposed. The algebraic degree and nonlinearity of the Boolean functions are also completely determined. And then we prove several of Braeken's conjectures about the algebraic degree and nonlinearity of the Boolean functions with optimum algebraic immunity in the two classes.

[1]  Frederik Armknecht,et al.  Algebraic Attacks on Combiners with Memory , 2003, CRYPTO.

[2]  Petr Savický On the Bent Boolean Functions That are Symmetric , 1994, Eur. J. Comb..

[3]  Bart Preneel,et al.  On the Algebraic Immunity of Symmetric Boolean Functions , 2005, INDOCRYPT.

[4]  An Braeken,et al.  Cryptographic Properties of Boolean Functions and S-Boxes (Cryptografische eigenschappen van Booleaanse functies en S-Boxen) , 2006 .

[5]  Anne Canteaut,et al.  Symmetric Boolean functions , 2005, IEEE Transactions on Information Theory.

[6]  Claude Carlet,et al.  Algebraic Attacks and Decomposition of Boolean Functions , 2004, EUROCRYPT.

[7]  Willi Meier,et al.  Fast Algebraic Attacks on Stream Ciphers with Linear Feedback , 2003, CRYPTO.

[8]  Chao Li,et al.  A Note on Symmetric Boolean Functions With Maximum Algebraic Immunity in Odd Number of Variables , 2007, IEEE Transactions on Information Theory.

[9]  Simon Litsyn,et al.  On Integral Zeros of Krawtchouk Polynomials , 1996, J. Comb. Theory, Ser. A.

[10]  Nicolas Courtois Algebraic Attacks on Combiners with Memory and Several Outputs , 2003, ICISC.

[11]  Claude Carlet,et al.  Algebraic immunity for cryptographically significant Boolean functions: analysis and construction , 2006, IEEE Transactions on Information Theory.

[12]  Richard M. Wilson,et al.  A Diagonal Form for the Incidence Matrices of t-Subsets vs.k-Subsets , 1990, Eur. J. Comb..

[13]  Nicolas Courtois Cryptanalysis of Sfinks , 2005, ICISC.

[14]  Lynn Margaret Batten Algebraic Attacks Over GF(q) , 2004, INDOCRYPT.

[15]  Feng Liu,et al.  Constructing Symmetric Boolean Functions With Maximum Algebraic Immunity , 2009, IEEE Transactions on Information Theory.

[16]  Anne Canteaut,et al.  Improved Fast Correlation Attacks Using Parity-Check Equations of Weight 4 and 5 , 2000, EUROCRYPT.

[17]  Subhamoy Maitra,et al.  Basic Theory in Construction of Boolean Functions with Maximum Possible Annihilator Immunity , 2006, Des. Codes Cryptogr..

[18]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .