Detecting failure events in buildings: a numerical and experimental analysis

A numerical method is used to investigate an approach for detecting the brittle fracture of welds associated with beam -column connections in instrumented buildings in real time through the use of time-reversed Green’s functions and wave propagation reciprocity. The approach makes use of a prerecorded catalog of Green’s functions for an instrumented building to detect failure events in the building during a later seismic event by screening continuous data for the presence of waveform similarities to one of the prerecorded events. This study addresses whether a set of Green’s functions in response to an impulsive force load can be used to approximate the response of the structure to a localized failure event such as a brittle weld fracture. Specifically, we investigate whether prerecorded Green’s functions can be used to determine the absolute time and location of a localized failure event in a building. We also seek to differentiate between sources such as a weld fracture that are structurally damaging and sources such as falling or colliding furniture and other non-structural elements that do not contribute to structural failure. This is explored numerically by comparing the dynamic response of a finite-element cantilevered beam model structure to a variety of loading mechanisms. A finite-element method is employed to determine the behavior of the resulting elastic waves and to obtain a general understanding of the structural response.