Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities
暂无分享,去创建一个
[1] Yu Huang,et al. Realization of joint spectral radius via Ergodic theory , 2011 .
[2] Xiongping Dai,et al. Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices , 2011 .
[3] Kai Lai Chung,et al. Markov Chains with Stationary Transition Probabilities , 1961 .
[4] Xiongping Dai,et al. A Gel'fand-type spectral radius formula and stability of linear constrained switching systems , 2011, ArXiv.
[5] L. Elsner. The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .
[6] Mau-Hsiang Shih,et al. Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .
[7] H. Furstenberg,et al. Products of Random Matrices , 1960 .
[8] Paul H. Siegel,et al. On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[9] V. Kozyakin. Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .
[10] Geir E. Dullerud,et al. Optimal Disturbance Attenuation for Discrete-Time Switched and Markovian Jump Linear Systems , 2006, SIAM J. Control. Optim..
[11] J. Lagarias,et al. The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .
[12] Jairo Bochi,et al. INEQUALITIES FOR NUMERICAL INVARIANTS OF SETS OF MATRICES , 2003 .
[13] G. Rota,et al. A note on the joint spectral radius , 1960 .
[14] Vincent D. Blondel,et al. An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..
[15] Ji-Woong Lee,et al. Uniform stabilization of discrete-time switched and Markovian jump linear systems , 2006, Autom..
[16] Yang Wang,et al. Bounded semigroups of matrices , 1992 .
[17] I. Daubechies,et al. Sets of Matrices All Infinite Products of Which Converge , 1992 .
[18] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[19] J. Doob. Stochastic processes , 1953 .
[20] Robert Shorten,et al. Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..
[21] J. Mairesse,et al. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .
[22] Nikita Sidorov,et al. Number of representations related to a linear recurrent basis , 1999 .
[23] Hai Lin,et al. Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.
[24] Nicola Guglielmi,et al. On the zero-stability of variable stepsize multistep methods: the spectral radius approach , 2001, Numerische Mathematik.
[25] Nikita Sidorov,et al. An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.
[26] Xiongping Dai,et al. Almost Sure Stability of Discrete-Time Switched Linear Systems: A Topological Point of View , 2008, SIAM J. Control. Optim..
[27] Fabian R. Wirth,et al. The generalized spectral radius and extremal norms , 2002 .
[28] Xiongping Dai,et al. Existence of full-Hausdorff-dimension invariant measures of dynamical systems with dimension metrics , 2005 .
[29] N. Barabanov. Lyapunov exponent and joint spectral radius: some known and new results , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[30] Viktor Vladimirovich Nemytskii. Qualitative theory of differential equations , 1960 .
[31] V. Shulman,et al. Formulae for joint spectral radii of sets of operators , 2002 .
[32] Fabian R. Wirth,et al. A Converse Lyapunov Theorem for Linear Parameter-Varying and Linear Switching Systems , 2005, SIAM J. Control. Optim..
[33] Xinlong Zhou,et al. Characterization of joint spectral radius via trace , 2000 .
[34] I. Morris. A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory , 2009, 0906.0260.
[35] Neil Fenichel. Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .
[36] L. Gurvits. Stability of discrete linear inclusion , 1995 .
[37] Shuzhi Sam Ge,et al. Analysis and synthesis of switched linear control systems , 2005, Autom..
[38] R. M. Jungers,et al. Counterexamples to the Complex Polytope Extremality Conjecture , 2009, SIAM J. Matrix Anal. Appl..
[39] Ian D. Morris,et al. The generalized Berger-Wang formula and the spectral radius of linear cocycles , 2009, 0906.2915.