Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities

The conjecture that periodically switched stability implies absolute asymptotic stability of random infinite products of a finite set of square matrices, has recently been disproved under the guise of the finiteness conjecture. In this paper, we show that this conjecture holds in terms of Markovian probabilities. More specifically, let S"k@?C^n^x^n,1@?k@?K, be arbitrarily given K matrices and @S"K^+={(k"j)"j"="1^+^~|1@?k"j@?K for each j>=1}, where n,K>=2. Then we study the exponential stability of the following discrete-time switched dynamics S: x"j=S"k"""j...S"k"""1x"0,j>=1 and x"0@?C^n where (k"j)"j"="1^+^~@?@S"K^+ can be an arbitrary switching sequence. For a probability row-vector p=(p"1,...,p"K)@?R^K and an irreducible Markov transition matrix P@?R^K^x^K with pP=p, we denote by @m"p","P the Markovian probability on @S"K^+ corresponding to (p,P). By using symbolic dynamics and ergodic-theoretic approaches, we show that, if S possesses the periodically switched stability then, (i) it is exponentially stable @m"p","P-almost surely; (ii) the set of stable switching sequences (k"j)"j"="1^+^~@?@S"K^+ has the same Hausdorff dimension as @S"K^+. Thus, the periodically switched stability of a discrete-time linear switched dynamics implies that the system is exponentially stable for ''almost'' all switching sequences.

[1]  Yu Huang,et al.  Realization of joint spectral radius via Ergodic theory , 2011 .

[2]  Xiongping Dai,et al.  Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices , 2011 .

[3]  Kai Lai Chung,et al.  Markov Chains with Stationary Transition Probabilities , 1961 .

[4]  Xiongping Dai,et al.  A Gel'fand-type spectral radius formula and stability of linear constrained switching systems , 2011, ArXiv.

[5]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[6]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[7]  H. Furstenberg,et al.  Products of Random Matrices , 1960 .

[8]  Paul H. Siegel,et al.  On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[9]  V. Kozyakin Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .

[10]  Geir E. Dullerud,et al.  Optimal Disturbance Attenuation for Discrete-Time Switched and Markovian Jump Linear Systems , 2006, SIAM J. Control. Optim..

[11]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[12]  Jairo Bochi,et al.  INEQUALITIES FOR NUMERICAL INVARIANTS OF SETS OF MATRICES , 2003 .

[13]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[14]  Vincent D. Blondel,et al.  An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..

[15]  Ji-Woong Lee,et al.  Uniform stabilization of discrete-time switched and Markovian jump linear systems , 2006, Autom..

[16]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[17]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[18]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[19]  J. Doob Stochastic processes , 1953 .

[20]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[21]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[22]  Nikita Sidorov,et al.  Number of representations related to a linear recurrent basis , 1999 .

[23]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[24]  Nicola Guglielmi,et al.  On the zero-stability of variable stepsize multistep methods: the spectral radius approach , 2001, Numerische Mathematik.

[25]  Nikita Sidorov,et al.  An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.

[26]  Xiongping Dai,et al.  Almost Sure Stability of Discrete-Time Switched Linear Systems: A Topological Point of View , 2008, SIAM J. Control. Optim..

[27]  Fabian R. Wirth,et al.  The generalized spectral radius and extremal norms , 2002 .

[28]  Xiongping Dai,et al.  Existence of full-Hausdorff-dimension invariant measures of dynamical systems with dimension metrics , 2005 .

[29]  N. Barabanov Lyapunov exponent and joint spectral radius: some known and new results , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[30]  Viktor Vladimirovich Nemytskii Qualitative theory of differential equations , 1960 .

[31]  V. Shulman,et al.  Formulae for joint spectral radii of sets of operators , 2002 .

[32]  Fabian R. Wirth,et al.  A Converse Lyapunov Theorem for Linear Parameter-Varying and Linear Switching Systems , 2005, SIAM J. Control. Optim..

[33]  Xinlong Zhou,et al.  Characterization of joint spectral radius via trace , 2000 .

[34]  I. Morris A rapidly-converging lower bound for the joint spectral radius via multiplicative ergodic theory , 2009, 0906.0260.

[35]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[36]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[37]  Shuzhi Sam Ge,et al.  Analysis and synthesis of switched linear control systems , 2005, Autom..

[38]  R. M. Jungers,et al.  Counterexamples to the Complex Polytope Extremality Conjecture , 2009, SIAM J. Matrix Anal. Appl..

[39]  Ian D. Morris,et al.  The generalized Berger-Wang formula and the spectral radius of linear cocycles , 2009, 0906.2915.