The use of variance reduction techniques in the estimation of simulation metamodels

Variance reduction techniques can be useful strategies for improving the estimates of simulation metamodel coefficients. Depending upon the goals of the experimenter, the type of metamodel being estimated, and the characteristics of the system being simulated, an appropriate variance reduction technique can be applied. This paper provides a review of recent research that investigates the application of variance reduction techniques in the simulation metamodeling context. One strategy, Schruben and Margolin's (1978) assignment rule, which utilizes a combination of antithetic and common random number streams, is found to be a particularly useful variance reduction technique for the estimation of simulation metamodels.

[1]  Linda Weiser Friedman,et al.  The Metamodel in Simulation Analysis: Can It Be Trusted? , 1988 .

[2]  Russell R. Barton,et al.  Metamodeling: a state of the art review , 1994, Proceedings of Winter Simulation Conference.

[3]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[4]  James R. Wilson,et al.  Validation of Simulation Analysis Methods for the Schruben-Margolin Correlation-Induction Strategy , 1992, Oper. Res..

[5]  Jeffrey D. Tew,et al.  Validation and statistical analysis procedures under the common random number correlation-induction strategy for multipopulation simulation experiments , 1995 .

[6]  Raymond H. Myers,et al.  Correlated Simulation Experiments in First-Order Response Surface Design , 1987, Oper. Res..

[7]  John A. Ausink,et al.  Using Experimental Design Techniques For Spacecraft Control Simulation , 1994, Simul..

[8]  Joan M. Donohue,et al.  Simulation designs for quadratic response surface models in the presence of model misspecification , 1992 .

[9]  Joan M. Donohue,et al.  Simulation Designs and Correlation Induction for Reducing Second-Order Bias in First-Order Response Surfaces , 1993, Oper. Res..

[10]  Charles R. Standridge,et al.  Analysis in Manufacturing Systems Simulation: A Case Study , 1994, Simul..

[11]  James R. Wilson,et al.  Estimating simulation metamodels using combined correlation-based variance reduction techniques , 1994 .

[12]  Christian N. Madu,et al.  SIMULATION METAMODELS OF SYSTEM AVAILABILITY AND OPTIMUM SPARE AND REPAIR UNITS , 1992 .

[13]  Joan M. Donohue,et al.  A sequential experimental design procedure for the estimation of first- and second-order simulation metamodels , 1993, TOMC.

[14]  Raymond H. Myers,et al.  Pseudorandom Number Assignment in Quadratic Response Surface Designs , 1987 .

[15]  Lee W. Schruben,et al.  Pseudorandom Number Assignment in Statistically Designed Simulation and Distribution Sampling Experiments , 1978 .

[16]  Michael A Zeimer Selection of pure error generators for simulation experiments , 1992 .

[17]  J. Kleijnen Regression metamodels for simulation with common random numbers: comparison of validation tests and confidence intervals , 1992 .

[18]  Lee W. Schruben,et al.  Variance reallocation in Taguchi's robust design framework , 1992, WSC '92.

[19]  Jeffrey D. Tew,et al.  Using central composite designs in simulation experiments , 1992, WSC '92.

[20]  Joan M. Donohue,et al.  Simulation designs for the estimation of quadratic response surface gradients in the presence of model misspecification , 1995 .

[21]  Christian N. Madu,et al.  Polynomial metamodelling and Taguchi designs in simulation with application to the maintenance float system , 1994 .

[22]  K. Bauer,et al.  Control‐variate selection criteria , 1992 .

[23]  J. Tew,et al.  Strategies for combining antithetic variates and control variates in designed simulation experiments , 1994 .

[24]  Jeffrey D. Tew,et al.  Heuristic diagnostics for the presence of pure error in computer simulation models , 1990, 1990 Winter Simulation Conference Proceedings.

[25]  George S. Fishman Correlated simulation experiments , 1974 .

[26]  G. Box,et al.  Empirical Model-Building and Response Surfaces. , 1990 .

[27]  Barry L. Nelson,et al.  Designing efficient simulation experiments , 1992, WSC '92.

[28]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[29]  Claude Dennis Pegden,et al.  Statistical Analysis for Use with the Schruben and Margolin Correlation Induction Strategy , 1987, Oper. Res..

[30]  Stephen S. Lavenberg,et al.  Statistical Results on Control Variables with Application to Queueing Network Simulation , 1982, Oper. Res..

[31]  Jack P. C. Kleijnen,et al.  Design and analysis of simulations: practical statistical techniques , 1977 .