Periodic solutions near equilibria of symmetric Hamiltonian systems

We consider the effects of symmetry on the dynamics of a nonlinear hamiltonian system invariant under the action of a compact Lie group T, in the vicinity of an isolated equilibrium: in particular, the local existence and stability of periodic trajectories. The main existence result, an equivariant version of the Weinstein—Moser theorem, asserts the existence of periodic trajectories with certain prescribed symmetries Z c T x S1, independently of the precise nonlinearities. We then describe the constraints put on the Floquet operators of these periodic trajectories by the action of T. This description has three ingredients: an analysis of the linear symplectic maps that commute with a symplectic representation, a study of the momentum mapping and its relation to Floquet multipliers, and Krein Theory. We find that for some 2, which we call cylospetral, all eigenvalues of the Floquet operator are forced by the group action to lie on the unit circle; that is, the periodic trajectory is spectrally stable. Similar results for equilibria are described briefly. The results are applied to a number of simple examples such as T = SO(2), 0(2 ), Zn, Dn, SU (2) ; and also to the irreducible symplectic actions of O(3) on spaces of complex spherical harmonics, modelling oscillations of a liquid drop.

[1]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[2]  F. R. Gantmakher The Theory of Matrices , 1984 .

[3]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[4]  M. G. Krein,et al.  The Basic Propositions of the Theory of λ-Zones of Stability of a Canonical System of Linear Differential Equations with Periodic Coefficients , 1983 .

[5]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[6]  Jerrold E. Marsden,et al.  Generic bifurcation of Hamiltonian systems with symmetry , 1987 .

[7]  J. Williamson On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems , 1936 .

[8]  J. Duistermaat Bifurcations of periodic solutions near equilibrium points of Hamiltonian systems , 1984 .

[9]  R. Churchill,et al.  A Guide to the Hénon-H.Ei Les Hamiltonian , 1985 .

[10]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[11]  A. Weinstein Bifurcations and Hamilton's principle , 1978 .

[12]  J. Moser,et al.  New aspects in the theory of stability of Hamiltonian systems , 1958 .

[13]  V. Varadarajan Lie groups, Lie algebras, and their representations , 1974 .

[14]  H. Scheerer,et al.  Liesche Gruppen und Algebren , 1983 .

[15]  D. Schmidt Hopf’s Bifurcation Theorem and the Center Theorem of Liapunov , 1976 .

[16]  Alan Weinstein,et al.  Normal modes for nonlinear hamiltonian systems , 1973 .

[17]  Jerrold E. Marsden,et al.  Nonlinear stability of fluid and plasma equilibria , 1985 .

[18]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[19]  J. Alexander,et al.  GLOBAL BIFURCATIONS OF PERIODIC ORBITS. , 1978 .

[20]  M. Golubitsky,et al.  Hopf Bifurcation in the presence of symmetry , 1984 .

[21]  A. Liapounoff,et al.  Problème général de la stabilité du mouvement , 1907 .

[22]  Richard S. Varga,et al.  Proof of Theorem 6 , 1983 .

[23]  Richard S. Palais,et al.  The principle of symmetric criticality , 1979 .

[24]  A. M. Li︠a︡punov Problème général de la stabilité du mouvement , 1949 .

[25]  P. Hartman Ordinary Differential Equations , 1965 .

[26]  R. Churchill,et al.  Isolated unstable periodic orbits , 1975 .

[27]  Tonny A. Springer Linear Algebraic Groups , 1981 .

[28]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[29]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[30]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[31]  J. Frank Adams,et al.  Lectures on Lie groups , 1969 .

[32]  M. Sugiura Conjugate classes of Cartan subalgebras in real semisimple Lie algebras. , 1959 .

[33]  Ian Stewart,et al.  Hopf bifurcation with dihedral group symmetry - Coupled nonlinear oscillators , 1986 .

[34]  M. Kummer,et al.  On averaging, reduction, and symmetry in hamiltonian systems , 1983 .

[35]  R. Cushman,et al.  Reduction of the semisimple 1:1 resonance , 1982 .

[36]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[37]  I. G. MacDonald Representation Theory of Lie Groups: Algebraic structure of Lie groups , 1980 .