Ferromanganese Crusts of the North Pacific Ocean

[1]  V. Rashidov,et al.  Distribution of Chemical Elements in the Mineral Fraction of Ferromanganese Crusts of the NW Pacific , 2022, Doklady Earth Sciences.

[2]  I. Vishnevskaya,et al.  Genesis and Nd Isotope Composition of Ferromanganese Deposits of the Sea of Okhotsk and the Kuril Island Arc , 2021, Russian Geology and Geophysics.

[3]  C. Langmuir,et al.  Plume-ridge interaction induced migration of the Hawaiian-Emperor seamounts. , 2021, Science bulletin.

[4]  E. Ivanova,et al.  Ferromanganese Crusts of the Doldrums Fracture Zone, Central Atlantic: New Data on the Chemical Composition , 2021, Doklady Earth Sciences.

[5]  A. Dubinin,et al.  Platinum Group Element Geochemistry in Ferromanganese Crust of the Detroit Guyot, Pacific Ocean , 2021, Oceanology.

[6]  V. Bondarenko,et al.  Underwater gas-hydrothermal activity within the Kuril island arc , 2021, Geosystems of Transition Zones.

[7]  D. Feng,et al.  Microbial utilization of rare earth elements at cold seeps related to aerobic methane oxidation , 2020, Chemical Geology.

[8]  M. D. Kumar,et al.  Anomalous phase association of REE in ferromanganese crusts from Indian mid-oceanic ridges: Evidence for large scale dispersion of hydrothermal iron , 2020 .

[9]  P. Mikhailik,et al.  Minerals in Manganese Deposits of Belyaevsky Volcano, the Sea of Japan , 2020, Russian Journal of Pacific Geology.

[10]  Y. Wang,et al.  The Potential of Marine Ferromanganese Nodules From Eastern Pacific as Recorders of Earth's Magnetic Field Changes During the Past 4.7 Myr: A Geochronological Study by Magnetic Scanning and Authigenic 10Be/9Be Dating , 2020, Journal of Geophysical Research: Solid Earth.

[11]  Weihua Liu,et al.  Controls on cobalt and nickel distribution in hydrothermal sulphide deposits in Bergslagen, Sweden - constraints from solubility modelling , 2020 .

[12]  S. Andreev Basics of oceanic mineralogenesis , 2020 .

[13]  F. Hauff,et al.  Role of the Aleutian Arc and NW Pacific seafloor in Pacific-wide plate reorganization in the Paleogene , 2019 .

[14]  D. Feng,et al.  Trace element systematics in cold seep carbonates and associated lipid compounds , 2019, Chemical Geology.

[15]  A. Khanchuk,et al.  Compositional Variations and Genesis of Sandy-Gravel Ferromanganese Deposits from the Yōmei Guyot (Holes 431, 431A DSDP), Emperor Ridge , 2019, Minerals.

[16]  P. Mikhailik,et al.  Chemical Composition and Genesis of Ferromanganese Crusts from the Sonne Ridge (Kuril Basin, Sea of Okhotsk) , 2019, Russian Geology and Geophysics.

[17]  M. Hannington,et al.  Divining gold in seafloor polymetallic massive sulfide systems , 2019, Mineralium Deposita.

[18]  J. Mirão,et al.  Hydrogenetic, Diagenetic and Hydrothermal Processes Forming Ferromanganese Crusts in the Canary Island Seamounts and Their Influence in the Metal Recovery Rate with Hydrometallurgical Methods , 2019, Minerals.

[19]  A. Khanchuk,et al.  The influence of hydrothermal activity during the origin of Co-rich manganese crusts of the N-W Pacific , 2019, E3S Web of Conferences.

[20]  A. Khanchuk,et al.  Distribution Ti in Mineral Fractions of Ferromanganese Deposits From the N-W Pacific , 2019, IOP Conference Series: Earth and Environmental Science.

[21]  A. Pourmand,et al.  Modern carbonate ooids preserve ambient aqueous REE signatures , 2019, Chemical Geology.

[22]  N. Konstantinova,et al.  Mineral Phase-Element Associations Based on Sequential Leaching of Ferromanganese Crusts, Amerasia Basin Arctic Ocean , 2018, Minerals.

[23]  P. Mikhailik,et al.  Distribution of rare-earth elements and yttrium in hydrothermal sedimentary ferromanganese crusts of the Sea of Japan (from phase analysis results) , 2017 .

[24]  A. Shiller,et al.  The Distribution of Dissolved and Particulate Mo and V along the U.S. GEOTRACES East Pacific Zonal Transect (GP16): The Roles of Oxides and Biogenic Particles In Their Distributions In the Oxygen Deficient Zone and the Hydrothermal Plume , 2017 .

[25]  D. Hutchinson,et al.  Arctic Deep Water Ferromanganese‐Oxide Deposits Reflect the Unique Characteristics of the Arctic Ocean , 2017 .

[26]  A. Shiller,et al.  Light rare earth element depletion during Deepwater Horizon blowout methanotrophy , 2017, Scientific Reports.

[27]  S. Labanieh,et al.  Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific) , 2017 .

[28]  D. Clague,et al.  Formation of Fe-Mn crusts within a continental margin environment , 2017 .

[29]  G. Cherkashov,et al.  Marine Co-Rich Ferromanganese Crust Deposits: Description and Formation, Occurrences and Distribution, Estimated World-wide Resources , 2017 .

[30]  J. Brugger,et al.  A review of the coordination chemistry of hydrothermal systems, or do coordination changes make ore deposits? , 2016 .

[31]  M. E. Mel’nikov,et al.  Volcanic edifices on guyots of the Magellan Seamounts (Pacific Ocean) , 2016, Russian Journal of Pacific Geology.

[32]  F. Hauff,et al.  RV SONNE Fahrtbericht / Cruise Report SO249 BERING – Origin and Evolution of the Bering Sea:An Integrated Geochronological, Volcanological,Petrological and Geochemical Approach, Leg 1: Dutch Harbor (U.S.A.) - Petropavlovsk-Kamchatsky (Russia),05.06.2016 - 15.07.2016,Leg 2: Petropavlovsk-Kamchatsky ( , 2016 .

[33]  Masao Ishii,et al.  The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally consistent data product for the world ocean , 2016 .

[34]  M. Hannington,et al.  News from the seabed – Geological characteristics and resource potential of deep-sea mineral resources , 2016 .

[35]  V. Rashidov,et al.  Rock magnetic and petrographical–mineralogical studies of the dredged rocks from the submarine volcanoes of the Sea-of-Okhotsk slope within the northern part of the Kuril Island Arc , 2016, Izvestiya, Physics of the Solid Earth.

[36]  J. Hein,et al.  Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean , 2016 .

[37]  M. E. Mel’nikov,et al.  Buried ferromanganese nodules of the Magellan Seamounts , 2016, Lithology and Mineral Resources.

[38]  A. Khanchuk,et al.  Peculiarities of the distribution of rare-earth elements and yttrium in mineral phases of the ferromanganese crusts from the Detroit guyot (Pacific Ocean) , 2015, Doklady Earth Sciences.

[39]  Wang Xiaoyuan,et al.  Characteristics of Sr, Nd and Pb isotopic compositions of hydrothermal Si-Fe-Mn-oxyhydroxides at the PACMANUS hydrothermal field, Eastern Manus Basin , 2015 .

[40]  M. Levitan Sedimentation rates in the Arctic Ocean during the last five marine isotope stages , 2015, Oceanology.

[41]  V. Sattarova,et al.  Geochemical and micropaleontological character of Deep-Sea sediments from the Northwestern Pacific near the Kuril–Kamchatka Trench , 2015 .

[42]  A. Khripounoff,et al.  Rare earth elements and neodymium isotopes in sedimentary organic matter , 2014 .

[43]  A. Koschinsky,et al.  Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium , 2014 .

[44]  S. Andreev,et al.  Mineral Resources of the Ocean: a Pragmatical Reality of the Foreseeable Future or Geopolitical Phantom , 2014 .

[45]  A. Koschinsky,et al.  Deep-Ocean Ferromanganese Crusts and Nodules , 2014 .

[46]  A. Koschinsky,et al.  Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources , 2013 .

[47]  S. Pletnev,et al.  Age and formation conditions of the Co-rich manganese crust on guyots of the Magellan seamounts , 2013, Lithology and Mineral Resources.

[48]  D. M. Nelson,et al.  Role of diatoms in nickel biogeochemistry in the ocean , 2012 .

[49]  M. Christl,et al.  Copper‐nickel‐rich, amalgamated ferromanganese crust‐nodule deposits from Shatsky Rise, NW Pacific , 2012 .

[50]  Weihua Liu,et al.  The stability of aqueous nickel(II) chloride complexes in hydrothermal solutions: Results of UV–Visible spectroscopic experiments , 2012 .

[51]  A. Mudholkar,et al.  Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: Comparative study between hydrogenous and hydrothermal deposits , 2012 .

[52]  Werner Müller,et al.  From nanoparticles via microtemplates and milliparticles to deep-sea nodules: biogenically driven mineral formation , 2012, Frontiers of Materials Science.

[53]  G. Baturin,et al.  Ferromanganese crusts from the Sea of Okhotsk , 2012, Oceanology.

[54]  G. B. Dalrymple,et al.  THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution , 2012 .

[55]  G. Baturin,et al.  Distribution of microelements in ferromanganese crusts of the sea of Okhotsk , 2011 .

[56]  A. Usui,et al.  Molecular-scale mechanisms of distribution and isotopic fractionation of molybdenum between seawater and ferromanganese oxides , 2011 .

[57]  G. Baturin Variations in the composition of the ferromanganese concretions of the Kara Sea , 2011 .

[58]  A. Koschinsky,et al.  Metal flux from hydrothermal vents increased by organic complexation , 2011 .

[59]  G. Baturin,et al.  Ferromanganese crusts on the bottom of the Bering Sea , 2010 .

[60]  O. Chudaev,et al.  Fe-Mn crusts from underwater rises of the Kashevarov Trough (Sea of Okhotsk) , 2009 .

[61]  M. Schulz,et al.  Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu‐Bonin arc system, western Pacific , 2008 .

[62]  Xuefa Shi,et al.  Co–rich Mn crusts from the Magellan Seamount cluster: the long journey through time , 2007 .

[63]  G. Cherkashov,et al.  Submarine hydrothermal activity and mineralization on the Kurile and western Aleutian island arcs, N.W. Pacific , 2006 .

[64]  K. Gillis,et al.  Hydrothermal manganese oxide deposits from Baby Bare seamount in the Northeast Pacific Ocean , 2006 .

[65]  A. Koschinsky,et al.  Mercury- and Silver-Rich Ferromanganese Oxides, Southern California Borderland: Deposit Model and Environmental Implications , 2005 .

[66]  A. Koschinsky,et al.  Global occurrence of tellurium-rich ferromanganese crusts and a model for the enrichment of tellurium , 2003 .

[67]  R. Byrne Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios , 2002, Geochemical transactions.

[68]  Everett L. Shock,et al.  Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures : Standard partial molal properties of organic species , 2002 .

[69]  A. Bauer,et al.  Sorption of lanthanides on smectite and kaolinite , 2002 .

[70]  S. Roberts,et al.  Genesis of Ferromanganese Crusts From the TAG Hydrothermal Field , 2001 .

[71]  J. Tarduno,et al.  OCEAN DRILLING PROGRAM LEG 197 SCIENTIFIC PROSPECTUS MOTION OF THE HAWAIIAN HOTSPOT: A PALEOMAGNETIC TEST , 2001 .

[72]  Fiske,et al.  A kuroko-type polymetallic sulfide deposit in a submarine silicic caldera , 1999, Science.

[73]  Y. Nozaki,et al.  Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation , 1999 .

[74]  Y. Sorokin,et al.  Production in the Sea of Okhotsk , 1999 .

[75]  Frank T. Manheim,et al.  Cobalt-Rich Ferromanganese Crusts in the Pacific , 1999 .

[76]  A. U Sui,et al.  Submarine hydrothermal manganese deposits in the Izu–Bonin – Mariana arc: An overview , 1998 .

[77]  P. Stoffers,et al.  A model for the formation of hydrothermal manganese crusts from the Pitcairn Island hotspot , 1997 .

[78]  A. Koschinsky,et al.  Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts , 1997 .

[79]  A. Usui,et al.  Manganese microchimneys buried in the Central Pacific pelagic sediments: evidence of intraplate water circulation? , 1997 .

[80]  D. Clague,et al.  Hydrothermal mineralization along submarine rift zones, Hawaii , 1996 .

[81]  A. Koschinsky,et al.  Sequential leaching of marine ferromanganese precipitates: Genetic implications , 1995 .

[82]  P. Möller,et al.  Yttrium and holmium in South Pacific seawater: vertical distribution and possible fractionation mechanisms , 1995 .

[83]  R. Feely,et al.  Trace metals in hydrothermal solutions from Cleft segment on the southern Juan de Fuca Ridge , 1994 .

[84]  G. Yogodzinski,et al.  Magnesian Andesites and the Subduction Component in a Strongly Calc-Alkaline Series at Piip Volcano, Far Western Aleutians , 1994 .

[85]  P. Falkowski,et al.  Phytoplankton productivity in the North Pacific ocean since 1900 and implications for absorption of anthropogenic CO2 , 1992, Nature.

[86]  M. Bau Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium , 1991 .

[87]  G. L. Farmer,et al.  Age determinations and growth rates of Pacific ferromanganese deposits using strontium isotopes , 1990 .

[88]  Scott M. McLennan,et al.  Rare earth elements in sedimentary rocks; influence of provenance and sedimentary processes , 1989 .

[89]  F. Manheim,et al.  Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific sea floor , 1988, Nature.

[90]  F. Manheim,et al.  Marine Cobalt Resources , 1986, Science.

[91]  B. Finney,et al.  Growth rates of manganese-rich nodules at MANOP Site H (Eastern North Pacific) , 1984 .

[92]  G. Glasby,et al.  Geochemistry of hydrothermal Mn-oxide deposits from the S.W. Pacific island arc , 1984 .

[93]  D. Sverjensky Europium redox equilibria in aqueous solution , 1984 .

[94]  A. Mangini,et al.  Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas , 1983, Nature.

[95]  Kenneth W. Bruland,et al.  Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific , 1980 .

[96]  W. Berger,et al.  Distribution of carbonate in surface sediments of the Pacific Ocean , 1976 .

[97]  J. W. Barnes The Mineral Resources of the Sea , 1966 .