Generalizing Some Usual Risk Measures in Financial and Insurance Applications

We illustrate a family of risk measures called GlueVaR that combine Value-at-Risk and Tail Value-at-Risk at different tolerance levels and have analytical closed-form expressions for the most frequently used distribution functions in financial and insurance applications, i.e. Normal, Log-normal, Student t and Generalized Pareto distributions. Tail-subadditivity is a remarkable property of a subfamily of GlueVaR risk measures. An implementation to the analysis of risk in an insurance portfolio is investigated.

[1]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[2]  Alejandro Balbás,et al.  Properties of Distortion Risk Measures , 2009 .

[3]  Stephan Süss Alexander McNeil, Rüdiger Frey, Paul Embrechts (2005): “Quantitative Risk Management”, Princeton Series in Finance, $79.50.-. , 2006 .

[4]  G. Choquet Theory of capacities , 1954 .

[5]  Montserrat Guillén,et al.  Beyond Value‐at‐Risk: GlueVaR Distortion Risk Measures , 2014, Risk analysis : an official publication of the Society for Risk Analysis.

[6]  Long Jiang,et al.  Convexity, translation invariance and subadditivity for g-expectations and related risk measures , 2008 .

[7]  Marc Henry,et al.  COMONOTONIC MEASURES OF MULTIVARIATE RISKS , 2009, 2102.04175.

[8]  H. Joe,et al.  Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures , 2012 .

[9]  J. Merigó,et al.  The connection between distortion risk measures and ordered weighted averaging operators , 2013 .

[10]  Jan Dhaene,et al.  Comonotonicity, correlation order and premium principles , 1998 .

[11]  D. Tasche,et al.  On the coherence of expected shortfall , 2001, cond-mat/0104295.

[12]  Paul Embrechts,et al.  Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness , 2009 .

[13]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[14]  Michel Denuit,et al.  Risk measurement with equivalent utility principles , 2006 .

[15]  Shaun S. Wang Premium Calculation by Transforming the Layer Premium Density , 1996, ASTIN Bulletin.

[16]  J. Dhaene,et al.  Can a Coherent Risk Measure Be Too Subadditive? , 2008 .

[17]  J. Hosking,et al.  Parameter and quantile estimation for the generalized pareto distribution , 1987 .

[18]  L. Montrucchio,et al.  RISK MEASURES: RATIONALITY AND DIVERSIFICATION , 2010 .

[19]  Shaun S. Wang,et al.  Insurance pricing and increased limits ratemaking by proportional hazards transforms , 1995 .

[20]  Characterization of upper comonotonicity via tail convex order , 2011 .

[21]  Paul Embrechts,et al.  For example, , 2022 .

[22]  Johan Segers,et al.  Risk concentration and diversification: Second-order properties , 2009, 0910.2367.

[23]  Raluca Vernic,et al.  Skewed bivariate models and nonparametric estimation for the CTE risk measure , 2008 .

[24]  Alexander Schied,et al.  Convex measures of risk and trading constraints , 2002, Finance Stochastics.

[25]  Die Chen,et al.  Extreme value behavior of aggregate dependent risks , 2012 .

[26]  D. Denneberg Non-additive measure and integral , 1994 .

[27]  Shaun S. Wang An Actuarial Index of the Right-Tail Risk , 1998 .

[28]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[29]  Radko Mesiar,et al.  Aggregation functions: Means , 2011, Inf. Sci..

[30]  Yongsheng Song,et al.  Risk Measures with Comonotonic Subadditivity or Convexity and Respecting Stochastic Orders , 2022 .

[31]  Gennady Samorodnitsky,et al.  Subadditivity Re–Examined: the Case for Value-at-Risk , 2005 .

[32]  Michel Denuit,et al.  Actuarial Theory for Dependent Risks: Measures, Orders and Models , 2005 .

[33]  G. Szegö Measures of risk , 2002 .

[34]  Radko Mesiar,et al.  Aggregation functions: Construction methods, conjunctive, disjunctive and mixed classes , 2011, Inf. Sci..

[35]  M. Frittelli,et al.  Putting order in risk measures , 2002 .

[36]  José María Sarabia,et al.  Modelling losses and locating the tail with the Pareto Positive Stable distribution , 2011 .