Sulfonated Thiophene Derivative Stabilized Aqueous Poly(3-hexylthiophene):Phenyl-C61-butyric Acid Methyl Ester Nanoparticle Dispersion for Organic Solar Cell Applications.

Aqueous dispersions of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) nanoparticles (NPs) have been fabricated using a thiophene-based surfactant 2-(3-thienyl)ethyloxybutylsulfonate sodium salt (TEBS) for the first time via the mini-emulsion process. The use of TEBS resulted in a stable colloidal dispersion of P3HT:PCBM NPs, of which the effect of various fabrication parameters is investigated. The fabricated NPs were characterized by dynamic light scattering, scanning electron microscopy, UV-visible spectroscopy, contrast-variation small and ultra-small angle neutron scattering, and cyclic voltammetry. The internal structure and electrochemical performance of TEBS-stabilized P3HT:PCBM NPs were compared to those of sodium dodecyl sulfate-stabilized core-shell (PCBM-P3HT) NPs at the same surfactant concentration. Neutron scattering and cyclic voltammetry results reveal a homogeneous distribution of small de-mixed P3HT and PCBM domains in the internal structure of TEBS-stabilized P3HT:PCBM NPs, reminiscent of cast film. Moreover, electron microscopy images show evidence of diffused NP surface/interface upon drying (without annealing), which indicates that the thiophene-containing TEBS may improve compatibility and film-forming properties of fabricated P3HT:PCBM NPs, and consequently be more suited for conventional film-processing methods for organic solar cell applications.

[1]  C. Brabec,et al.  Overcoming Microstructural Limitations in Water Processed Organic Solar Cells by Engineering Customized Nanoparticulate Inks , 2018 .

[2]  G. Hadziioannou,et al.  Aqueous PCDTBT:PC71 BM Photovoltaic Inks Made by Nanoprecipitation. , 2018, Macromolecular rapid communications.

[3]  Jianqi Zhang,et al.  Toward Over 15% Power Conversion Efficiency for Organic Solar Cells: Current Status and Perspectives , 2017 .

[4]  E. Gilbert,et al.  Relating Structure to Efficiency in Surfactant-Free Polymer/Fullerene Nanoparticle-Based Organic Solar Cells. , 2017, ACS applied materials & interfaces.

[5]  M. Wienk,et al.  Aqueous Nanoparticle Polymer Solar Cells: Effects of Surfactant Concentration and Processing on Device Performance , 2017, ACS applied materials & interfaces.

[6]  Long Ye,et al.  Green-solvent-processable organic solar cells , 2016 .

[7]  S. Subianto,et al.  Bulk heterojunction organic photovoltaics from water-processable nanomaterials and their facile fabrication approaches. , 2016, Advances in colloid and interface science.

[8]  Frank Darmann,et al.  BILBY: Time-of-Flight Small Angle Scattering Instrument , 2016 .

[9]  K. Ghiggino,et al.  Charge generation and morphology in P3HT:PCBM nanoparticles prepared by mini-emulsion and reprecipitation methods. , 2015, Nanoscale.

[10]  Marlus Koehler,et al.  Charge transport model for photovoltaic devices based on printed polymer: Fullerene nanoparticles , 2015 .

[11]  Kerry B. Burke,et al.  Probing the origin of photocurrent in nanoparticulate organic photovoltaics , 2015 .

[12]  Luping Yu,et al.  Recent Advances in Bulk Heterojunction Polymer Solar Cells. , 2015, Chemical reviews.

[13]  Alexander Colsmann,et al.  Eco‐Friendly Fabrication of 4% Efficient Organic Solar Cells from Surfactant‐Free P3HT:ICBA Nanoparticle Dispersions , 2014, Advanced materials.

[14]  D. Venkataraman,et al.  Fabrication conditions for efficient organic photovoltaic cells from aqueous dispersions of nanoparticles , 2014 .

[15]  Kerry B. Burke,et al.  The effect of polymer molecular weight on P3HT: PCBM nanoparticulate organic photovoltaic device performance , 2014 .

[16]  J. J. Richards,et al.  Correlating structure and photocurrent for composite semiconducting nanoparticles with contrast variation small-angle neutron scattering and photoconductive atomic force microscopy. , 2014, ACS nano.

[17]  Ajay K. Pandey,et al.  Determination of fullerene scattering length density: a critical parameter for understanding the fullerene distribution in bulk heterojunction organic photovoltaic devices. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[18]  Andreas K. Freund,et al.  Kookaburra: the ultra‐small‐angle neutron scattering instrument at OPAL , 2013 .

[19]  Paul C. Dastoor,et al.  Nano-domain behaviour in P3HT:PCBM nanoparticles, relating material properties to morphological changes , 2013 .

[20]  Xiaojing Zhou,et al.  The role of miscibility in polymer:fullerene nanoparticulate organic photovoltaic devices , 2013 .

[21]  Kerry B. Burke,et al.  Determining the structural motif of P3HT:PCBM nanoparticulate organic photovoltaic devices , 2013 .

[22]  R. J. Kline,et al.  Poly(3-hexylthiophene) and [6,6]-Phenyl-C61-butyric Acid Methyl Ester Mixing in Organic Solar Cells , 2012 .

[23]  Markus Hösel,et al.  Roll-to-roll fabrication of polymer solar cells , 2012 .

[24]  M. Dadmun,et al.  A new model for the morphology of P3HT/PCBM organic photovoltaics from small-angle neutron scattering: rivers and streams. , 2011, ACS nano.

[25]  J. Kirkensgaard,et al.  A novel lyotropic liquid crystal formed by triphilic star-polyphiles: hydrophilic/oleophilic/fluorophilic rods arranged in a 12.6.4. tiling. , 2011, Physical chemistry chemical physics : PCCP.

[26]  William T Heller,et al.  Small-angle neutron scattering and contrast variation: a powerful combination for studying biological structures. , 2010, Acta crystallographica. Section D, Biological crystallography.

[27]  Boualem Hammouda,et al.  A new Guinier-Porod model , 2010 .

[28]  M. Mackay,et al.  Nanoparticle concentration profile in polymer-based solar cells , 2010 .

[29]  John A. Tainer,et al.  X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution , 2007, Quarterly Reviews of Biophysics.

[30]  Andrés J. García,et al.  Organic solar cells from water-soluble poly (thiophene)/fullerene heterojunction , 2007 .

[31]  Steven R. Kline,et al.  Reduction and analysis of SANS and USANS data using IGOR Pro , 2006 .

[32]  Dmitri I. Svergun,et al.  PRIMUS: a Windows PC-based system for small-angle scattering data analysis , 2003 .

[33]  L. M. Varela,et al.  A Comparative Study of the Determination of the Critical Micelle Concentration by Conductivity and Dielectric Constant Measurements , 1998 .

[34]  R. May,et al.  The Forward Scattering of Cold Neutrons by Mixtures of Light and Heavy Water , 1982 .

[35]  G. Porod,et al.  Die Röntgenkleinwinkelstreuung von dichtgepackten kolloiden Systemen , 1951 .