EMPIRICAL CHARACTERISTIC FUNCTION IN TIME SERIES ESTIMATION

Because the empirical characteristic function (ECF) is the Fourier transform of the empirical distribution function, it retains all the information in the sample but can overcome difficulties arising from the likelihood. This paper discusses an estimation method via the ECF for strictly stationary processes. Under some regularity conditions, the resulting estimators are shown to be consistent and asymptotically normal. The method is applied to estimate the stable autoregressive moving average (ARMA) models. For the general stable ARMA model for which the maximum likelihood approach is not feasible, Monte Carlo evidence shows that the ECF method is a viable estimation method for all the parameters of interest. For the Gaussian ARMA model, a particular stable ARMA model, the optimal weight functions and estimating equations are given. Monte Carlo studies highlight the finite sample performances of the ECF method relative to the exact and conditional maximum likelihood methods.

[1]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[2]  K. Singleton Estimation of affine asset pricing models using the empirical characteristic function , 2001 .

[3]  J. Nolan,et al.  Maximum likelihood estimation and diagnostics for stable distributions , 2001 .

[4]  Mark A. McComb A Practical Guide to Heavy Tails , 2000, Technometrics.

[5]  Jérôme Dedecker,et al.  On the functional central limit theorem for stationary processes , 2000 .

[6]  Yongmiao Hong,et al.  Hypothesis Testing in Time Series via the Empirical Characteristic Function: A Generalized Spectral Density Approach , 1999 .

[7]  J. Huston McCulloch Numerical approximation of the symmetric stable distribution and density , 1998 .

[8]  Richard A. Davis,et al.  Inference for linear processes with stable noise , 1998 .

[9]  S. Satchell,et al.  The Cumulant Generating Function Estimation Method , 1997, Econometric Theory.

[10]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[11]  J. L. Nolan,et al.  Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .

[12]  Richard A. Davis,et al.  Gauss-Newton and M-estimation for ARMA processes with infinite variance , 1996 .

[13]  A. Harvey,et al.  5 Stochastic volatility , 1996 .

[14]  J. Chergui The integrated squared error estimation of parameters , 1996 .

[15]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[16]  C. Klüppelberg,et al.  PARAMETER-ESTIMATION FOR ARMA MODELS WITH INFINITE VARIANCE INNOVATIONS , 1995 .

[17]  S. Satchell,et al.  Estimation of Stationary Stochastic Processes via the Empirical Characteristic Function , 1995 .

[18]  Claudia Klüppelberg,et al.  Some Limit Theory for the Self-normalised Periodogram of Stable Processes , 1994 .

[19]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[20]  W. Newey,et al.  Automatic Lag Selection in Covariance Matrix Estimation , 1994 .

[21]  James D. Hamilton Time Series Analysis , 1994 .

[22]  Claudia Klüppelberg,et al.  Spectral estimates and stable processes , 1993 .

[23]  É. Moulines,et al.  Testing that a stationary time-series is Gaussian: time-domain vs. frequency-domain approaches , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.

[24]  Richard A. Davis,et al.  M-estimation for autoregressions with infinite variance , 1992 .

[25]  P. Brockwell,et al.  Time Series: Theory and Methods , 2013 .

[26]  Peter C. B. Phillips,et al.  A Shortcut to LAD Estimator Asymptotics , 1991, Econometric Theory.

[27]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[28]  A. Feuerverger,et al.  An efficiency result for the empirical characteristic function in stationary time-series models , 1990 .

[29]  D. Duffie,et al.  Simulated Moments Estimation of Markov Models of Asset Prices , 1990 .

[30]  William H. Press,et al.  Numerical Recipes: FORTRAN , 1988 .

[31]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[32]  T. W. Epps Testing that a Gaussian Process is Stationary , 1988 .

[33]  T. W. Epps Testing That a Stationary Time Series is Gaussian , 1987 .

[34]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[35]  W. Newey,et al.  Large sample estimation and hypothesis testing , 1986 .

[36]  L. Hansen LARGE SAMPLE PROPERTIES OF GENERALIZED METHOD OF , 1982 .

[37]  H. White Maximum Likelihood Estimation of Misspecified Models , 1982 .

[38]  S. Csőrgő Limit Behaviour of the Empirical Characteristic Function , 1981 .

[39]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[40]  C. R. Heathcote,et al.  The integrated squared error estimation of parameters , 1977 .

[41]  A. Feuerverger,et al.  The Empirical Characteristic Function and Its Applications , 1977 .

[42]  C. Mallows,et al.  A Method for Simulating Stable Random Variables , 1976 .

[43]  A. Paulson,et al.  The estimation of the parameters of the stable laws , 1975 .

[44]  W. Stout Almost sure convergence , 1974 .

[45]  M. Rosenblatt Central limit theorem for stationary processes , 1972 .

[46]  P. Whittle,et al.  Prediction and Regulation. , 1965 .

[47]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[48]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[49]  M. Loève On Almost Sure Convergence , 1951 .