EMPIRICAL CHARACTERISTIC FUNCTION IN TIME SERIES ESTIMATION
暂无分享,去创建一个
[1] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.
[2] K. Singleton. Estimation of affine asset pricing models using the empirical characteristic function , 2001 .
[3] J. Nolan,et al. Maximum likelihood estimation and diagnostics for stable distributions , 2001 .
[4] Mark A. McComb. A Practical Guide to Heavy Tails , 2000, Technometrics.
[5] Jérôme Dedecker,et al. On the functional central limit theorem for stationary processes , 2000 .
[6] Yongmiao Hong,et al. Hypothesis Testing in Time Series via the Empirical Characteristic Function: A Generalized Spectral Density Approach , 1999 .
[7] J. Huston McCulloch. Numerical approximation of the symmetric stable distribution and density , 1998 .
[8] Richard A. Davis,et al. Inference for linear processes with stable noise , 1998 .
[9] S. Satchell,et al. The Cumulant Generating Function Estimation Method , 1997, Econometric Theory.
[10] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[11] J. L. Nolan,et al. Numerical calculation of stable densities and distribution functions: Heavy tails and highly volatil , 1997 .
[12] Richard A. Davis,et al. Gauss-Newton and M-estimation for ARMA processes with infinite variance , 1996 .
[13] A. Harvey,et al. 5 Stochastic volatility , 1996 .
[14] J. Chergui. The integrated squared error estimation of parameters , 1996 .
[15] D. Applebaum. Stable non-Gaussian random processes , 1995, The Mathematical Gazette.
[16] C. Klüppelberg,et al. PARAMETER-ESTIMATION FOR ARMA MODELS WITH INFINITE VARIANCE INNOVATIONS , 1995 .
[17] S. Satchell,et al. Estimation of Stationary Stochastic Processes via the Empirical Characteristic Function , 1995 .
[18] Claudia Klüppelberg,et al. Some Limit Theory for the Self-normalised Periodogram of Stable Processes , 1994 .
[19] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[20] W. Newey,et al. Automatic Lag Selection in Covariance Matrix Estimation , 1994 .
[21] James D. Hamilton. Time Series Analysis , 1994 .
[22] Claudia Klüppelberg,et al. Spectral estimates and stable processes , 1993 .
[23] É. Moulines,et al. Testing that a stationary time-series is Gaussian: time-domain vs. frequency-domain approaches , 1993, [1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics.
[24] Richard A. Davis,et al. M-estimation for autoregressions with infinite variance , 1992 .
[25] P. Brockwell,et al. Time Series: Theory and Methods , 2013 .
[26] Peter C. B. Phillips,et al. A Shortcut to LAD Estimator Asymptotics , 1991, Econometric Theory.
[27] D. Andrews. Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .
[28] A. Feuerverger,et al. An efficiency result for the empirical characteristic function in stationary time-series models , 1990 .
[29] D. Duffie,et al. Simulated Moments Estimation of Markov Models of Asset Prices , 1990 .
[30] William H. Press,et al. Numerical Recipes: FORTRAN , 1988 .
[31] H. Künsch. The Jackknife and the Bootstrap for General Stationary Observations , 1989 .
[32] T. W. Epps. Testing that a Gaussian Process is Stationary , 1988 .
[33] T. W. Epps. Testing That a Stationary Time Series is Gaussian , 1987 .
[34] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[35] W. Newey,et al. Large sample estimation and hypothesis testing , 1986 .
[36] L. Hansen. LARGE SAMPLE PROPERTIES OF GENERALIZED METHOD OF , 1982 .
[37] H. White. Maximum Likelihood Estimation of Misspecified Models , 1982 .
[38] S. Csőrgő. Limit Behaviour of the Empirical Characteristic Function , 1981 .
[39] P. Hall,et al. Martingale Limit Theory and Its Application , 1980 .
[40] C. R. Heathcote,et al. The integrated squared error estimation of parameters , 1977 .
[41] A. Feuerverger,et al. The Empirical Characteristic Function and Its Applications , 1977 .
[42] C. Mallows,et al. A Method for Simulating Stable Random Variables , 1976 .
[43] A. Paulson,et al. The estimation of the parameters of the stable laws , 1975 .
[44] W. Stout. Almost sure convergence , 1974 .
[45] M. Rosenblatt. Central limit theorem for stationary processes , 1972 .
[46] P. Whittle,et al. Prediction and Regulation. , 1965 .
[47] M. J. D. Powell,et al. An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..
[48] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[49] M. Loève. On Almost Sure Convergence , 1951 .