暂无分享,去创建一个
Van H. Vu | Ke Wang | Sean O'Rourke | Sean O’Rourke | V. Vu | Ke Wang
[1] Emmanuel J. Candès,et al. Matrix Completion With Noise , 2009, Proceedings of the IEEE.
[2] Nisheeth K. Vishnoi,et al. Lx = b , 2013, Found. Trends Theor. Comput. Sci..
[3] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[4] Van H. Vu,et al. Eigenvectors of random matrices: A survey , 2016, J. Comb. Theory A.
[5] Prateek Jain,et al. Low-rank matrix completion using alternating minimization , 2012, STOC '13.
[6] David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..
[7] Shang-Hua Teng,et al. Spectral Sparsification of Graphs , 2008, SIAM J. Comput..
[8] Sanjeev Arora,et al. A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.
[9] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[10] Jianqing Fan,et al. ENTRYWISE EIGENVECTOR ANALYSIS OF RANDOM MATRICES WITH LOW EXPECTED RANK. , 2017, Annals of statistics.
[11] Andrea Montanari,et al. Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..
[12] V. N. Bogaevski,et al. Matrix Perturbation Theory , 1991 .
[13] Emmanuel J. Candès,et al. A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..
[14] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[15] J. Bouchaud,et al. Eigenvector dynamics under free addition , 2013, 1301.4939.
[16] Shang-Hua Teng,et al. Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.
[17] Nikhil Srivastava,et al. Graph sparsification by effective resistances , 2008, SIAM J. Comput..
[18] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..
[19] Chandler Davis. The rotation of eigenvectors by a perturbation , 1963 .
[20] Martin J. Wainwright,et al. Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees , 2015, ArXiv.
[21] Weichen Wang,et al. An $\ell_{\infty}$ Eigenvector Perturbation Bound and Its Application , 2017, J. Mach. Learn. Res..
[22] Robert D. Nowak,et al. High-Rank Matrix Completion , 2012, AISTATS.
[23] Rongrong Wang,et al. Singular Vector Perturbation Under Gaussian Noise , 2012, SIAM J. Matrix Anal. Appl..
[24] Mikhail Belkin,et al. Unperturbed: spectral analysis beyond Davis-Kahan , 2017, ALT.
[25] V. Vu,et al. Random perturbation of low rank matrices: Improving classical bounds , 2013, 1311.2657.
[26] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[27] Dong Xia,et al. Perturbation of linear forms of singular vectors under Gaussian noise , 2015 .
[28] Alex Gittens,et al. Error Bounds for Random Matrix Approximation Schemes , 2009, 0911.4108.
[29] R. Latala,et al. The dimension-free structure of nonhomogeneous random matrices , 2017, Inventiones mathematicae.
[30] Van H. Vu. Singular vectors under random perturbation , 2011, Random Struct. Algorithms.
[31] Anru R. Zhang,et al. Rate-Optimal Perturbation Bounds for Singular Subspaces with Applications to High-Dimensional Statistics , 2016, 1605.00353.
[32] W. Kahan,et al. The Rotation of Eigenvectors by a Perturbation. III , 1970 .
[33] P. Wedin. Perturbation bounds in connection with singular value decomposition , 1972 .
[34] Raj Rao Nadakuditi,et al. The singular values and vectors of low rank perturbations of large rectangular random matrices , 2011, J. Multivar. Anal..
[35] Shang-Hua Teng,et al. Spectral sparsification of graphs: theory and algorithms , 2013, CACM.
[36] S. Chatterjee,et al. Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.
[37] Nam H. Nguyen,et al. Matrix sparsification via the Khintchine inequality , 2010 .
[38] Andrea Montanari,et al. Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.
[39] Petros Drineas,et al. A note on element-wise matrix sparsification via a matrix-valued Bernstein inequality , 2010, Inf. Process. Lett..
[40] Martin J. Wainwright,et al. Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..
[41] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[42] Raj Rao Nadakuditi,et al. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices , 2009, 0910.2120.
[43] Van H. Vu,et al. Random weighted projections, random quadratic forms and random eigenvectors , 2013, Random Struct. Algorithms.
[44] Trac D. Tran,et al. Tensor sparsification via a bound on the spectral norm of random tensors , 2010, ArXiv.
[45] Yihua Li,et al. Blind Regression: Nonparametric Regression for Latent Variable Models via Collaborative Filtering , 2016, NIPS.
[46] V. Koltchinskii,et al. Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.
[47] Abhisek Kundu,et al. A Note on Randomized Element-wise Matrix Sparsification , 2014, ArXiv.
[48] Joel A. Tropp,et al. An Introduction to Matrix Concentration Inequalities , 2015, Found. Trends Mach. Learn..