Semi-Implicit Runge-Kutta Schemes: Development and Application to Compressible Channel Flow

time stepconstraintdueto thefine meshnear thewall.The explicitsubschemeis asix-stage fourth-order low-storage Runge–Kutta scheme. Based on analysis in Fourier space and results obtained for propagation test cases, the semiimplicitschemesareshowntobeoforder3and,forwavesdiscretizedbyanumberofpointsperperiodbetween4and 16,tobeasaccurateas,ormoreaccuratethan,thestandardexplicitfourth-orderRunge–Kuttaalgorithmintermsof dissipationanddispersion.Thelarge-eddysimulationofacompressibleturbulentchannelflowatafrictionReynolds numberof360andaMachnumberof0.1isthencarriedoutwithoneoftheproposedalgorithms.Thecomputational time is reduced by a factor 1.33 with respect to a large-eddy simulation using the explicit subscheme in all directions. Wall-pressure and velocity spectra from the large-eddy simulation are presented to give insights into the flow turbulent structures. In particular, wave number–frequency spectra are calculated. Acoustic components appear to be identified in these spectra.

[1]  Parviz Moin,et al.  A semi-implicit method for resolution of acoustic waves in low Mach number flows , 2002 .

[2]  Tom Hynes,et al.  Sound generation by turbulence , 2004 .

[3]  Christophe Bailly,et al.  Turbulence and energy budget in a self-preserving round jet: direct evaluation using large eddy simulation , 2009, Journal of Fluid Mechanics.

[4]  N. Sandham,et al.  Sound radiation in turbulent channel flows , 2003, Journal of Fluid Mechanics.

[5]  Neil D. Sandham,et al.  Aeroacoustics of wall-bounded turbulent flows , 2002 .

[6]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[7]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[8]  C. Bogey,et al.  Influence of resolution and Reynolds number on large-eddy simulations of channel flow using relaxation filtering , 2013 .

[9]  W. Habashi,et al.  2N-Storage Low Dissipation and Dispersion Runge-Kutta Schemes for Computational Acoustics , 1998 .

[10]  R. Moser,et al.  Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions , 1991 .

[11]  E. Batschelet Über die numerische Auflösung von Randwertproblemen bei elliptischen partiellen Differentialgleichungen , 1952 .

[12]  Roger L. Simpson,et al.  Surface Pressure Fluctuations Beneath Two- and Three-Dimensional Turbulent Boundary Layers , 2000 .

[13]  Javier Jiménez,et al.  A high-resolution code for turbulent boundary layers , 2009, J. Comput. Phys..

[14]  A. Powell Aerodynamic Noise and the Plane Boundary , 1960 .

[15]  Manuel Calvo,et al.  Short note: a new minimum storage Runge-Kutta scheme for computational acoustics , 2004 .

[16]  Christophe Bailly,et al.  Large-eddy simulation of the flow and acoustic fields of a Reynolds number 105 subsonic jet with tripped exit boundary layers , 2011 .

[17]  Christophe Bailly,et al.  On the spectra of nozzle-exit velocity disturbances in initially nominally turbulent, transitional jets , 2011 .

[18]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[19]  Xiaolin Zhong,et al.  High-Order Semi-Implicit Simulation of Hypersonic Boundary Layer Stability and Transition(Supported by AFOSR Grants F49620-95-1-0405 and F49620-97-1-0030) , 1997 .

[20]  Philippe Lafon,et al.  Sound vs. Pseudo-sound Contributions to the Wind Noise inside a Car Cabin: A Modal Approach , 2012 .

[21]  Ronald J. Adrian,et al.  Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer , 2005, Journal of Fluid Mechanics.

[22]  Spectral features of the wall-pressure fluctuations in turbulent wall flows with and without perturbations using LES , 2001 .

[23]  Parviz Moin,et al.  On the space‐time characteristics of wall‐pressure fluctuations , 1990 .

[24]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[25]  C. Bogey,et al.  Low-dissipation and low-dispersion fourth-order Runge–Kutta algorithm , 2006 .

[26]  C. Bogey,et al.  A family of low dispersive and low dissipative explicit schemes for flow and noise computations , 2004 .

[27]  D. L. Hawkings,et al.  Sound generation by turbulence and surfaces in arbitrary motion , 1969, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[28]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[29]  M. Calvo,et al.  Linearly implicit Runge—Kutta methods for advection—reaction—diffusion equations , 2001 .

[30]  Luc Mongeau,et al.  Compressible large eddy simulations of wall-bounded turbulent flows using a semi-implicit numerical scheme for low Mach number aeroacoustics , 2006, J. Comput. Phys..

[31]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[32]  M.Y. Hussaini,et al.  Low-Dissipation and Low-Dispersion Runge-Kutta Schemes for Computational Acoustics , 1994 .

[33]  Javier Jiménez,et al.  Turbulent boundary layers and channels at moderate Reynolds numbers , 2010, Journal of Fluid Mechanics.

[34]  W. Willmarth,et al.  Measurements of the fluctuating pressure at the wall beneath a thick turbulent boundary layer , 1962, Journal of Fluid Mechanics.

[35]  C. Bailly,et al.  Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations. , 2010, The Journal of the Acoustical Society of America.

[36]  C. Runge Ueber die numerische Auflösung von Differentialgleichungen , 1895 .

[37]  Xiaolin Zhong,et al.  Additive Semi-Implicit Runge-Kutta Methods for Computing High-Speed Nonequilibrium Reactive Flows , 1996 .

[38]  Jan S. Hesthaven,et al.  Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes , 2007, J. Comput. Phys..

[39]  N. Curle The influence of solid boundaries upon aerodynamic sound , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  Christophe Bailly,et al.  A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations , 2009, J. Comput. Phys..

[41]  M. Bull WALL-PRESSURE FLUCTUATIONS BENEATH TURBULENT BOUNDARY LAYERS: SOME REFLECTIONS ON FORTY YEARS OF RESEARCH , 1996 .

[42]  F. A. Schraub,et al.  The structure of turbulent boundary layers , 1967, Journal of Fluid Mechanics.

[43]  Christophe Bailly,et al.  High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems , 2007, J. Comput. Phys..

[44]  J. Laufer Sound radiation from a turbulent boundary layer. , 1961 .

[45]  X. Gloerfelt,et al.  Turbulent boundary-layer noise: direct radiation at Mach number 0.5 , 2013, Journal of Fluid Mechanics.

[46]  C. Tam,et al.  Dispersion-relation-preserving finite difference schemes for computational acoustics , 1993 .

[47]  C. Bogey Three-dimensional non-refrective boundary conditions for acoustic simulation : far field formulation and validation test cases , 2002 .

[48]  Neil D. Sandham,et al.  Wall Pressure and Shear Stress Spectra from Direct Simulations of Channel Flow , 2006 .

[49]  Christophe Bailly,et al.  Large eddy simulations of transitional round jets: Influence of the Reynolds number on flow development and energy dissipation , 2006 .

[50]  P. Moin,et al.  Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer , 2009, Journal of Fluid Mechanics.

[51]  S. K. Robinson,et al.  Coherent Motions in the Turbulent Boundary Layer , 1991 .