Data Portraits: Connecting People of Opposing Views

ABSTRACT Social networks allow people to connect with each otherand have conversations on a wide variety of topics. How-ever, users tend to connect with like-minded people and readagreeable information, a behavior that leads to group polar-ization. Motivated by this scenario, we study how to takeadvantage of partial homophily to suggest agreeable contentto users authored by people with opposite views on sensitiveissues. We introduce a paradigm to present a data portraitof users, in which their characterizing topics are visualizedand their corresponding tweets are displayed using an or-ganic design. Among their tweets we inject recommendedtweets from other people considering their views on sensitiveissues in addition to topical relevance, indirectly motivatingconnections between dissimilar people. To evaluate our ap-proach, we present a case study on Twitter about a sensitivetopic in Chile, where we estimate user stances for regularpeople and nd intermediary topics. We then evaluated ourdesign in a user study. We found that recommending topi-cally relevant content from authors with opposite views in abaseline interface had a negative emotional e ect. We sawthat our organic visualization design reverts that e ect. Wealso observed signi cant individual di erences linked to eval-uation of recommendations. Our results suggest that organicvisualization may revert the negative e ects of providingpotentially sensitive content.

[1]  Martin Wattenberg,et al.  TIMELINESTag clouds and the case for vernacular visualization , 2008, INTR.

[2]  Sean A. Munson,et al.  Encouraging Reading of Diverse Political Viewpoints with a Browser Widget , 2013, ICWSM.

[3]  Danah Boyd,et al.  Vizster: visualizing online social networks , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[4]  Martin Wattenberg,et al.  Google+Ripples: a native visualization of information flow , 2013, WWW '13.

[5]  Seungwoo Kang,et al.  NewsCube: delivering multiple aspects of news to mitigate media bias , 2009, CHI.

[6]  Sune Lehmann,et al.  Understanding the Demographics of Twitter Users , 2011, ICWSM.

[7]  Yong Yu,et al.  Collaborative personalized tweet recommendation , 2012, SIGIR '12.

[8]  Barbara Poblete,et al.  #Santiago is not #Chile, or is it?: a model to normalize social media impact , 2013, ChileCHI '13.

[9]  Derek Ruths,et al.  Classifying Political Orientation on Twitter: It's Not Easy! , 2013, ICWSM.

[10]  H. Vogel A better way to construct the sunflower head , 1979 .

[11]  Fernanda B. Viégas,et al.  Visualizing email content: portraying relationships from conversational histories , 2006, CHI.

[12]  Kenneth Y. Goldberg,et al.  Opinion space: a scalable tool for browsing online comments , 2010, CHI.

[13]  Ana-Maria Popescu,et al.  Democrats, republicans and starbucks afficionados: user classification in twitter , 2011, KDD.

[14]  D. Boyd,et al.  Dynamic Debates: An Analysis of Group Polarization Over Time on Twitter , 2010 .

[15]  Jimmy J. Lin,et al.  WTF: the who to follow service at Twitter , 2013, WWW.

[16]  C. Elkan,et al.  Topic Models , 2008 .

[17]  Daniele Quercia,et al.  Our Twitter Profiles, Our Selves: Predicting Personality with Twitter , 2011, 2011 IEEE Third Int'l Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int'l Conference on Social Computing.

[18]  Matthew Michelson,et al.  Tweet Disambiguate Entities Retrieve Folksonomy SubTree Step 1 : Discover Categories Generate Topic Profile from SubTrees Step 2 : Discover Profile Topic Profile : “ English Football ” “ World Cup ” , 2010 .

[19]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[20]  Mor Naaman,et al.  Diamonds in the rough: Social media visual analytics for journalistic inquiry , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[21]  John T. Stasko,et al.  Casual Information Visualization: Depictions of Data in Everyday Life , 2007, IEEE Transactions on Visualization and Computer Graphics.

[22]  Wai-Tat Fu,et al.  Beyond the filter bubble: interactive effects of perceived threat and topic involvement on selective exposure to information , 2013, CHI.

[23]  Sean A. Munson,et al.  Presenting diverse political opinions: how and how much , 2010, CHI.

[24]  Susan T. Dumais,et al.  Characterizing Microblogs with Topic Models , 2010, ICWSM.

[25]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[26]  Michael S. Bernstein,et al.  Twitinfo: aggregating and visualizing microblogs for event exploration , 2011, CHI.

[27]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[28]  Martin Wattenberg,et al.  Participatory Visualization with Wordle , 2009, IEEE Transactions on Visualization and Computer Graphics.

[29]  Ingmar Weber,et al.  Pro-Anorexia and Pro-Recovery Photo Sharing: A Tale of Two Warring Tribes , 2012, Journal of medical Internet research.

[30]  Jacob Ratkiewicz,et al.  Political Polarization on Twitter , 2011, ICWSM.

[31]  Derek Greene,et al.  ThemeCrowds: multiresolution summaries of twitter usage , 2011, SMUC '11.

[32]  Mark E. J. Newman A measure of betweenness centrality based on random walks , 2005, Soc. Networks.

[33]  M. Sheelagh T. Carpendale,et al.  A Visual Backchannel for Large-Scale Events , 2010, IEEE Transactions on Visualization and Computer Graphics.

[34]  L. Festinger,et al.  A Theory of Cognitive Dissonance , 2017 .

[35]  Judith S. Donath,et al.  PeopleGarden: creating data portraits for users , 1999, UIST '99.

[36]  Judith S. Donath,et al.  A semantic approach to visualizing online conversations , 2002, CACM.

[37]  Judith Donath,et al.  Data portraits , 2010, SIGGRAPH '10.

[38]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[39]  Ricardo Baeza-Yates,et al.  Modern Information Retrieval - the concepts and technology behind search, Second edition , 2011 .

[40]  Judith S. Donath,et al.  Mycrocosm: Visual Microblogging , 2009, 2009 42nd Hawaii International Conference on System Sciences.

[41]  Mehran Sahami,et al.  Text Mining: Classification, Clustering, and Applications , 2009 .

[42]  Eli Pariser,et al.  The Filter Bubble: What the Internet Is Hiding from You , 2011 .

[43]  S. Asch Forming impressions of personality. , 1946, Journal of Abnormal Psychology.