Assimilation of endmember variability in spectral mixture analysis for urban land cover extraction

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  B. Forster An examination of some problems and solutions in monitoring urban areas from satellite platforms , 1985 .

[3]  John A. Richards,et al.  Remote Sensing Digital Image Analysis , 1986 .

[4]  Yosio Edemir Shimabukuro,et al.  The least-squares mixing models to generate fraction images derived from remote sensing multispectral data , 1991, IEEE Trans. Geosci. Remote. Sens..

[5]  Christopher Justice,et al.  The impact of misregistration on change detection , 1992, IEEE Trans. Geosci. Remote. Sens..

[6]  John B. Adams,et al.  Quantitative subpixel spectral detection of targets in multispectral images. [terrestrial and planetary surfaces] , 1992 .

[7]  J. Settle,et al.  Linear mixing and the estimation of ground cover proportions , 1993 .

[8]  Joseph W. Boardman,et al.  Analysis, understanding, and visualization of hyperspectral data as convex sets in n space , 1995, Defense, Security, and Sensing.

[9]  Gregory Asner,et al.  Unmixing the directional reflectances of AVHRR sub-pixel landcovers , 1997, IEEE Trans. Geosci. Remote. Sens..

[10]  Margaret E. Gardner,et al.  Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models , 1998 .

[11]  G. Asner Biophysical and Biochemical Sources of Variability in Canopy Reflectance , 1998 .

[12]  Peng Gong,et al.  Noise Effect on Linear Spectral Unmixing , 1999, Ann. GIS.

[13]  Mario Winter,et al.  N-FINDR: an algorithm for fast autonomous spectral end-member determination in hyperspectral data , 1999, Optics & Photonics.

[14]  Toby N. Carlson,et al.  Satellite Remote Sensing of Land Use Changes in and around San José, Costa Rica , 1999 .

[15]  Maria Petrou,et al.  Confidence in linear spectral unmixing of single pixels , 1999, IEEE Trans. Geosci. Remote. Sens..

[16]  J. Townshend,et al.  Beware of per-pixel characterization of land cover , 2000 .

[17]  M. E. Winter Comparison of approaches for determining end-members in hyperspectral data , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[18]  Gregory Asner,et al.  Endmember bundles: a new approach to incorporating endmember variability into spectral mixture analysis , 2000, IEEE Trans. Geosci. Remote. Sens..

[19]  D. Lobell,et al.  A Biogeophysical Approach for Automated SWIR Unmixing of Soils and Vegetation , 2000 .

[20]  J. W. Bruce,et al.  The causes of land-use and land-cover change: moving beyond the myths , 2001 .

[21]  J. G. Liu,et al.  Smoothing Filter-based Intensity Modulation : a spectral preserve image fusion technique for improving spatial details , 2001 .

[22]  C. Small,et al.  A global analysis of urban reflectance , 2005 .

[23]  Antonio J. Plaza,et al.  Spatial/spectral endmember extraction by multidimensional morphological operations , 2002, IEEE Trans. Geosci. Remote. Sens..

[24]  C. Lo,et al.  Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area , 2002 .

[25]  Conghe Song,et al.  Estimating Tree Crown Size from Multiresolution Remotely Sensed Imagery , 2003 .

[26]  John R. Weeks,et al.  Measuring the Physical Composition of Urban Morphology Using Multiple Endmember Spectral Mixture Models , 2003 .

[27]  D. Roberts,et al.  Endmember selection for multiple endmember spectral mixture analysis using endmember average RMSE , 2003 .

[28]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Changshan Wu,et al.  Normalized spectral mixture analysis for monitoring urban composition using ETM+ imagery , 2004 .

[30]  D. Lu,et al.  Spectral Mixture Analysis of the Urban Landscape in Indianapolis with Landsat ETM+ Imagery , 2004 .

[31]  Benoit Rivard,et al.  Derivative spectral unmixing of hyperspectral data applied to mixtures of lichen and rock , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[32]  N. Lam,et al.  Wavelets for Urban Spatial Feature Discrimination: Comparisons with Fractal, Spatial Autocorrelation, and Spatial Co-Occurrence Approaches , 2004 .

[33]  Jiang Li,et al.  Correction to "Wavelet-Based Feature Extraction for Improved Endmember Abundance Estimation in Linear Unmixing of Hyperspectral Signals" , 2004 .

[34]  Allan Aasbjerg Nielsen,et al.  Spectral Mixture Analysis: Linear and Semi-parametric Full and Iterated Partial Unmixing in Multi- and Hyperspectral Image Data , 2001, International Journal of Computer Vision.

[35]  Zheng Mingguo,et al.  Effect of prior probabilities on maximum likelihood classifier , 2005, Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05..

[36]  Antonio J. Plaza,et al.  Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[37]  Qiangguo Cai,et al.  Effect of prior probabilities on maximum likelihood classifier , 2005, IGARSS.

[38]  Jeffery J. Settle,et al.  On the residual term in the linear mixture model and its dependence on the point spread function , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[39]  Alessandro Mecocci,et al.  Theoretical and experimental assessment of noise effects on least-squares spectral unmixing of hyperspectral images , 2005 .

[40]  Conghe Song,et al.  Spectral mixture analysis for subpixel vegetation fractions in the urban environment: How to incorporate endmember variability? , 2005 .

[41]  George Xian,et al.  Assessments of urban growth in the Tampa Bay watershed using remote sensing data , 2005 .

[42]  Ruiliang Pu,et al.  Estimation of yellow starthistle abundance through CASI-2 hyperspectral imagery using linear spectral mixture models , 2006 .

[43]  Antonio Plaza,et al.  Endmember extraction algorithms from hyperspectral images , 2006 .

[44]  E. LeDrew,et al.  Remote sensing of aquatic coastal ecosystem processes , 2006 .

[45]  Jeff Settle,et al.  On the effect of variable endmember spectra in the linear mixture model , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Benoit Rivard,et al.  Intra- and inter-class spectral variability of tropical tree species at La Selva, Costa Rica: Implications for species identification using HYDICE imagery , 2006 .

[47]  Alfred Stein,et al.  Abundance Estimation of Spectrally Similar Minerals by Using Derivative Spectra in Simulated Annealing , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[48]  D. Roberts,et al.  Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil , 2007 .

[49]  Nicolas H. Younan,et al.  Hyperspectral Pixel Unmixing via Spectral Band Selection and DC-Insensitive Singular Value Decomposition , 2007, IEEE Geoscience and Remote Sensing Letters.

[50]  Hairong Qi,et al.  Endmember Extraction From Highly Mixed Data Using Minimum Volume Constrained Nonnegative Matrix Factorization , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Huong T. X. Doan,et al.  Variability in Soft Classification Prediction and its implications for Sub-pixel Scale Change Detection and Super Resolution Mapping , 2007 .

[52]  Uttam Kumar,et al.  Constrained Linear Spectral Unmixing Technique for Regional Land Cover Mapping Using MODIS Data , 2008 .

[53]  D. Roberts,et al.  Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS , 2008 .

[54]  Khaled Elleithy Innovations and Advanced Techniques in Systems, Computing Sciences and Software Engineering , 2008 .

[55]  T. Ramachandra,et al.  Pixel based fusion using IKONOS imagery , 2009 .

[56]  Ben Somers,et al.  A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems , 2009 .

[57]  D. Roberts,et al.  Hierarchical Multiple Endmember Spectral Mixture Analysis (MESMA) of hyperspectral imagery for urban environments , 2009 .

[58]  Alfred O. Hero,et al.  Joint Bayesian Endmember Extraction and Linear Unmixing for Hyperspectral Imagery , 2009, IEEE Transactions on Signal Processing.

[59]  Jan Verbesselt,et al.  Magnitude- and Shape-Related Feature Integration in Hyperspectral Mixture Analysis to Monitor Weeds in Citrus Orchards , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[60]  B. Matsushita,et al.  1 A Pre-screened and Normalized Multiple Endmember Spectral Mixture Analysis for Mapping 1 Impervious Surface Area in Lake Kasumigaura Basin , Japan 2 , 2010 .

[61]  Uttam Kumar,et al.  Mining Land Cover Information Using Multilayer Perceptron and Decision Tree from MODIS Data , 2010 .

[62]  S. Delalieux,et al.  An automated waveband selection technique for optimized hyperspectral mixture analysis , 2010 .

[63]  T. V. Ramachandra,et al.  Hybrid Bayesian Classifier for Improved Classification Accuracy , 2011, IEEE Geoscience and Remote Sensing Letters.

[64]  Spectral mixture analysis of Landsat 5-TM and EO-1 Hyperion images to monitor defoliation in mixed-aged Eucalyptus globules Labill plantations in southern Australia , 2011 .

[65]  T. Ramachandra,et al.  Comparison of 10 Multi-Sensor Image Fusion Paradigms for IKONOS Images , 2011 .

[66]  Pol Coppin,et al.  Endmember variability in Spectral Mixture Analysis: A review , 2011 .

[67]  T. V. Ramachandra,et al.  A Neural Network Based Hybrid Mixture Model to Extract Information from Non-linear Mixed Pixels , 2012, Inf..