Library of cumulative atomic multipole moments. I. Nucleic acid bases

Cumulative atomic multipole moments (CAMM) have been calculated for normal, rare, and protonated forms of adenine, thymine, guanine, cytosine, uracil, and 2-aminopurine from ab initio LCAO-MO-SCF wave function obtained from all-valence modpot basis set with ab initio effective core potentials. CAMM may be used in calculating electrostatic molecular potentials, electric fields, field gradients, etc. as well intermolecular interaction energies. Additionally, we derived analytic expressions for the point charge assemblages representing simultaneously all atomic and molecular moments. Convergence of atomic versus molecular multipole expansion has been illustrated in the Appendix.

[1]  J. J. Kaufman,et al.  Ab initioLCAO‐MO‐SCF Calculation of chlorpromazine and promazine , 1976 .

[2]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. I. Use of Gaussian Expansions of Slater‐Type Atomic Orbitals , 1969 .

[3]  D. Maillard,et al.  Convergency of some properties of electrostatically interacting molecules from accurate CI multipole function calculations , 1980 .

[4]  S. Huzinaga,et al.  Mulliken Population Analysis and Point Charge Model of Molecules , 1980 .

[5]  W. Sokalski Theoretical model for exploration of catalytic activity of enzymes and design of new catalysts: CO2 hydration reaction , 1981 .

[6]  Frank A. Momany,et al.  Determination of partial atomic charges from ab initio molecular electrostatic potentials. Application to formamide, methanol, and formic acid , 1978 .

[7]  W. A. Sokalski,et al.  Correlated molecular and cumulative atomic multipole moments , 1987 .

[8]  Theoretical studies on substrate binding to the active site of carbonic anhydrase , 1979 .

[9]  P. C. Hariharan,et al.  Nonempirical Atom‐Atom Potentials for Main Components of Intermolecular Interaction Energy , 1986 .

[10]  M. Paniagua,et al.  1.1.1 electrostatic description of molecular systems , 1985 .

[11]  M. Aida,et al.  An explanation of the induction of mutations by 2-aminopurine from an ab initio molecular orbital study. , 1986, Mutation research.

[12]  M. Mezei,et al.  Efficient multipole expansion: Choice of order and density partitioning techniques , 1977 .

[13]  M. Spackman Atom−atom potentials via electron gas theory , 1986 .

[14]  Anthony J. Stone,et al.  Distributed multipole analysis, or how to describe a molecular charge distribution , 1981 .

[15]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[16]  Robert Rein,et al.  On Physical Properties and Interactions of Polyatomic Molecules: With Application to Molecular Recognition in Biology , 1973 .

[17]  A. Stone,et al.  Intermolecular forces in van der waals dimers , 1986 .

[18]  Raymond A. Poirier,et al.  Cumulative atomic multipole representation of the molecular charge distribution and its basis set dependence , 1983 .

[19]  Alistair P. Rendell,et al.  The role of electrostatics in molecular interactions: prediction of shapes and electronic properties of weakly bound complexes , 1986 .

[20]  Ad van der Avoird,et al.  N2–N2 interaction potential from ab initio calculations, with application to the structure of (N2)2 , 1980 .

[21]  P. Claverie,et al.  Interactions between nucleic acid bases in hydrogen bonded and stacked configurations: The role of the molecular charge distribution , 1981 .

[22]  P. C. Hariharan,et al.  Guidelines for development of basis sets for the first‐order intermolecular interaction energy calculations , 1983 .

[23]  J. T. Brobjer,et al.  The intermolecular potential of HF , 1983 .

[24]  J. T. Brobjer,et al.  A method for calculating the electrostatic energy between small polar molecules. The multipole-fitted point-charge method , 1982 .

[25]  Sarah L. Price,et al.  The electrostatic interactions in van der Waals complexes involving aromatic molecules , 1987 .

[26]  U. Singh,et al.  A NEW FORCE FIELD FOR MOLECULAR MECHANICAL SIMULATION OF NUCLEIC ACIDS AND PROTEINS , 1984 .

[27]  D. Pérahia,et al.  Hydration scheme of uracil and cytosine , 1978 .

[28]  P. C. Hariharan,et al.  A self-consistent field interaction energy decomposition study of 12 hydrogen-bonded dimers , 1983 .

[29]  M. Aida,et al.  An ab initio molecular orbital study on the stacking interaction between nucleic acid bases: Dependence on the sequence and relation to the conformation , 1986 .

[30]  Patrick W. Fowler,et al.  A model for the geometries of Van der Waals complexes , 1985 .

[31]  Donald E. Williams,et al.  Representation of the molecular electrostatic potential by a net atomic charge model , 1981 .

[32]  P. H. Smith,et al.  Intermolecular interactions in crystals of carboxylic acids , 1979 .

[33]  Bernard T. Thole,et al.  A general population analysis preserving the dipole moment , 1983 .

[34]  R. Rein,et al.  Potential-derived point-charge model study of electrostatic interactions in DNA base components. , 1984, Chemical physics letters.

[35]  R. Dovesi,et al.  Multiple expansion of molecular charge distribution , 1974 .

[36]  Mark A. Spackman,et al.  A SIMPLE QUANTITATIVE MODEL OF HYDROGEN-BONDING , 1986 .

[37]  Patrick W. Fowler,et al.  Do electrostatic interactions predict structures of van der Waals molecules , 1983 .

[38]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[39]  R. Bonaccorsi,et al.  An approximate expression of the electrostatic molecular potential for benzenic compounds , 1979 .