T cell-selective deletion of Oct1 protects animals from autoimmune neuroinflammation while maintaining neurotropic pathogen response

[1]  C. Beam,et al.  Autoreactive T effector memory differentiation mirrors &bgr; cell function in type 1 diabetes , 2018, The Journal of clinical investigation.

[2]  Nikolaos A Patsopoulos,et al.  Genetics of Multiple Sclerosis: An Overview and New Directions. , 2018, Cold Spring Harbor perspectives in medicine.

[3]  D. J. Doty,et al.  Induced CNS expression of CXCL1 augments neurologic disease in a murine model of multiple sclerosis via enhanced neutrophil recruitment , 2018, European journal of immunology.

[4]  Ryan M. O’Connell,et al.  MicroRNA-155 enhances T cell trafficking and antiviral effector function in a model of coronavirus-induced neurologic disease , 2016, Journal of Neuroinflammation.

[5]  Brett S. Marro,et al.  Inducible Expression of CXCL1 within the Central Nervous System Amplifies Viral-Induced Demyelination , 2016, The Journal of Immunology.

[6]  Jonathan L. Linehan,et al.  CD4+ T cell anergy prevents autoimmunity and generates regulatory T cell precursors , 2015, Nature Immunology.

[7]  A. Regev,et al.  Oct1 and OCA-B are selectively required for CD4 memory T cell function , 2015, The Journal of experimental medicine.

[8]  G. Krishnamoorthy,et al.  Neutrophil-related factors as biomarkers in EAE and MS , 2015, The Journal of experimental medicine.

[9]  M. Daly,et al.  Genetic and Epigenetic Fine-Mapping of Causal Autoimmune Disease Variants , 2014, Nature.

[10]  H. Rosen,et al.  FTY720 (fingolimod) modulates the severity of viral-induced encephalomyelitis and demyelination , 2014, Journal of Neuroinflammation.

[11]  H. Wiendl,et al.  Myelin Oligodendrocyte Glycoprotein (MOG35-55) Induced Experimental Autoimmune Encephalomyelitis (EAE) in C57BL/6 Mice , 2014, Journal of visualized experiments : JoVE.

[12]  Y. Kluger,et al.  Oct-1 regulates IL-17 expression by directing interchromosomal associations in conjunction with CTCF in T cells. , 2014, Molecular cell.

[13]  L. Steinman Immunology of relapse and remission in multiple sclerosis. , 2014, Annual review of immunology.

[14]  A. Skowera,et al.  Effector-Memory T Cells Develop in Islets and Report Islet Pathology in Type 1 Diabetes , 2014, The Journal of Immunology.

[15]  A. Regev,et al.  Dynamic regulatory network controlling Th17 cell differentiation , 2013, Nature.

[16]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[17]  K. Hogquist,et al.  T-cell tolerance: central and peripheral. , 2012, Cold Spring Harbor perspectives in biology.

[18]  M. Jenkins,et al.  Arthritogenic Self-Reactive CD4+ T Cells Acquire an FR4hiCD73hi Anergic State in the Presence of Foxp3+ Regulatory T Cells , 2012, The Journal of Immunology.

[19]  A. Shakya,et al.  Oct1 Is a Switchable, Bipotential Stabilizer of Repressed and Inducible Transcriptional States* , 2010, The Journal of Biological Chemistry.

[20]  T. Lane,et al.  The pathogenesis of murine coronavirus infection of the central nervous system. , 2010, Critical reviews in immunology.

[21]  T. Lane,et al.  CXCL10 and trafficking of virus-specific T cells during coronavirus-induced demyelination , 2009, Autoimmunity.

[22]  J. Goverman Autoimmune T cell responses in the central nervous system , 2009, Nature Reviews Immunology.

[23]  S. Stohlman,et al.  Interleukin-12 (IL-12), but Not IL-23, Deficiency Ameliorates Viral Encephalitis without Affecting Viral Control , 2009, Journal of Virology.

[24]  R. Kroczek,et al.  The Role of ICOS in Directing T Cell Responses: ICOS-Dependent Induction of T Cell Anergy by Tolerogenic Dendritic Cells1 , 2009, The Journal of Immunology.

[25]  J. Carton,et al.  Generation of a protective T-cell response following coronavirus infection of the central nervous system is not dependent on IL-12/23 signaling. , 2008, Viral immunology.

[26]  C. Schaumburg,et al.  T Cell Antiviral Effector Function Is Not Dependent on CXCL10 Following Murine Coronavirus Infection1 , 2006, The Journal of Immunology.

[27]  J. Whittaker,et al.  Evidence for unique association signals in SLE at the CD28-CTLA4-ICOS locus in a family-based study. , 2006, Human molecular genetics.

[28]  R. Strieter,et al.  Differential roles for CXCR3 in CD4+ and CD8+ T cell trafficking following viral infection of the CNS , 2006, European journal of immunology.

[29]  S. Stohlman,et al.  Coronavirus infection of the central nervous system: host–virus stand-off , 2006, Nature Reviews Microbiology.

[30]  L. Fugger,et al.  Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? , 2005, Brain : a journal of neurology.

[31]  H. Lassmann,et al.  Autoimmune CD4+ T Cell Memory: Lifelong Persistence of Encephalitogenic T Cell Clones in Healthy Immune Repertoires 1 , 2005, The Journal of Immunology.

[32]  J. Goverman,et al.  The role of CD8(+) T cells in multiple sclerosis and its animal models. , 2005, Current drug targets. Inflammation and allergy.

[33]  T. Mcclanahan,et al.  IL-23 drives a pathogenic T cell population that induces autoimmune inflammation , 2005, The Journal of experimental medicine.

[34]  R. Nurieva,et al.  Regulation of immune and autoimmune responses by ICOS. , 2003, Journal of Autoimmunity.

[35]  L. Cardon,et al.  Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF(-kappa)B transcription factors. , 2002 .

[36]  A. Khoruts,et al.  Antagonistic Roles for CTLA-4 and the Mammalian Target of Rapamycin in the Regulation of Clonal Anergy: Enhanced Cell Cycle Progression Promotes Recall Antigen Responsiveness1 , 2001, The Journal of Immunology.

[37]  J. Gutiérrez-Ramos,et al.  The costimulatory molecule ICOS plays an important role in the immunopathogenesis of EAE , 2001, Nature Immunology.

[38]  A. Sharpe,et al.  CTLA-4 regulates induction of anergy in vivo. , 2001, Immunity.

[39]  J. Allison,et al.  ICOS co-stimulatory receptor is essential for T-cell activation and function , 2001, Nature.

[40]  T. Lane,et al.  Chemokine expression and viral infection of the central nervous system: Regulation of host defense and neuropathology , 2001, Immunologic research.

[41]  R. Lechler,et al.  Immobilized anti-CD3 mAb induces anergy in murine naive and memory CD4+ T cells in vitro. , 1997, International immunology.

[42]  A. Balsari,et al.  Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. , 1997, Cytometry.

[43]  E. Shevach,et al.  IL-12 unmasks latent autoimmune disease in resistant mice , 1996, The Journal of experimental medicine.

[44]  D. Loh,et al.  Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. , 1994, Immunity.

[45]  S. Stohlman,et al.  Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells , 1990, Journal of virology.