Golem95C: A library for one-loop integrals with complex masses
暂无分享,去创建一个
Gudrun Heinrich | T. Reiter | J.-Ph. Guillet | E. Pilon | G. Cullen | T. Kleinschmidt | M. Rodgers | E. Pilon | G. Heinrich | G. Cullen | T. Reiter | J. Guillet | T. Kleinschmidt | M. Rodgers
[1] G. J. van Oldenborgh,et al. FF — a package to evaluate one-loop Feynman diagrams , 1991 .
[2] Radiative corrections to ZZ-->ZZ in the electroweak standard model , 1996, hep-ph/9612390.
[3] T. Hahn,et al. News from FormCalc and LoopTools , 2006, hep-ph/0601248.
[4] I. Schmitt,et al. Calculation of dimensionally regularized box graphs in the zero mass case , 1979 .
[5] C. Sturm,et al. Higgs Pseudo-Observables, Second Riemann Sheet and All That ‡‡ , 2010, 1001.3360.
[6] A. Denner,et al. A Compact expression for the scalar one loop four point function , 1991 .
[7] R. Pittau,et al. Automated one-loop calculations: a proof of concept , 2009, 0903.4665.
[8] R. Pittau,et al. Recursive Numerical Calculus of One-loop Tensor Integrals , 2008 .
[9] A. Denner,et al. Infrared divergent scalar box integrals with applications in the electroweak standard model , 1990 .
[10] T. Riemann,et al. A recursive approach to the reduction of tensor Feynman integrals , 2010, 1002.0529.
[11] G. Zanderighi,et al. Scalar one-loop integrals for QCD , 2007, 0712.1851.
[12] T. Hahn,et al. Automatized One-Loop Calculations in 4 and D dimensions , 1998 .
[13] Andreas van Hameren,et al. OneLOop: For the evaluation of one-loop scalar functions , 2010, Comput. Phys. Commun..
[14] Z. Bern,et al. Dimensionally regulated one-loop integrals , 1993 .
[15] Dao Thi Nhung,et al. D0C: A code to calculate scalar one-loop four-point integrals with complex masses , 2009, Comput. Phys. Commun..
[16] R. Pittau,et al. The NLO multileg working group: summary report , 2008, 0803.0494.
[17] T. Hahn. Feynman Diagram Calculations with FeynArts, FormCalc, and LoopTools , 2010, 1006.2231.
[18] E. Glover,et al. A Calculational Formalism for One-Loop Integrals , 2004, hep-ph/0402152.
[19] A. Denner,et al. Scalar one-loop 4-point integrals , 2010, 1005.2076.
[20] M. Campanelli,et al. The SM and NLO Multileg Working Group: Summary report , 2010, 1003.1241.
[21] L. Dixon,et al. Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.
[22] T. Binoth,et al. Reduction formalism for dimensionally regulated one loop N point integrals , 1999, hep-ph/9911342.
[23] C. Schubert,et al. An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .
[24] Predictions for all processes e + e - → fermions + γ , 1999, hep-ph/9904472.
[25] G. Duplančić,et al. Reduction method for dimensionally regulatedone-loop N-point Feynman integrals , 2003, hep-ph/0303184.
[26] J. Guillet,et al. Six-Photon Amplitudes in Scalar QED , 2007, 0711.4713.
[27] G. Ossola,et al. Tensorial reconstruction at the integrand level , 2010, 1008.2441.
[28] J Schwinger,et al. Relativistic quantum field theory. , 1966, Science.
[29] G. Passarino. Higgs Pseudo-Observables , 2010 .
[30] J. Vermaseren,et al. New algorithms for one-loop integrals , 1990 .
[31] A. I. Davydychev. A simple formula for reducing Feynman diagrams to scalar integrals , 1991 .
[32] J. Campbell,et al. Next-to-leading order corrections to $W^+$ 2 jet and $Z^+$ 2 jet production at hadron colliders , 2002, hep-ph/0202176.
[33] C. Sturm,et al. Two-loop threshold singularities, unstable particles and complex masses , 2008, 0809.1302.
[34] A. Denner,et al. Electroweak corrections to charged-current e+ e- ---> 4 fermion processes: Technical details and further results , 2005, hep-ph/0505042.
[35] Costas G. Papadopoulos,et al. CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.
[36] V. Hankele,et al. Vbfnlo: A parton level Monte Carlo for processes with electroweak bosons , 2008, Comput. Phys. Commun..
[37] T. Riemann,et al. Complete algebraic reduction of one-loop tensor Feynman integrals , 2010, 1009.4436.
[38] P. Mastrolia,et al. Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level , 2010, 1006.0710.
[39] Gerard 't Hooft,et al. Scalar One Loop Integrals , 1979 .
[40] G. Passarino,et al. Anomalous Threshold as the Pivot of Feynman Amplitudes , 2008, 0807.0698.
[41] T. Hahn,et al. Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2001 .
[42] F. Boudjema,et al. b anti-b Higgs production at the LHC: Yukawa corrections and the leading Landau singularity , 2008, 0806.1498.
[43] D. Soper,et al. Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.
[44] A. Denner,et al. Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.
[45] S. Weinzierl,et al. Automated computation of one-loop integrals in massless theories , 2005, hep-ph/0502165.
[46] T. Binoth,et al. golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs , 2008, Comput. Phys. Commun..