Golem95C: A library for one-loop integrals with complex masses

We present a program for the numerical evaluation of scalar integrals and tensor form factors entering the calculation of one-loop amplitudes which supports the use of complex masses in the loop integrals. The program is built on an earlier version of the golem95 library, which performs the reduction to a certain set of basis integrals using a formalism where inverse Gram determinants can be avoided. It can be used to calculate one-loop amplitudes with arbitrary masses in an algebraic approach as well as in the context of unitarity-inspired numerical reconstruction of the integrand. PACS: 12.38.Bx

[1]  G. J. van Oldenborgh,et al.  FF — a package to evaluate one-loop Feynman diagrams , 1991 .

[2]  Radiative corrections to ZZ-->ZZ in the electroweak standard model , 1996, hep-ph/9612390.

[3]  T. Hahn,et al.  News from FormCalc and LoopTools , 2006, hep-ph/0601248.

[4]  I. Schmitt,et al.  Calculation of dimensionally regularized box graphs in the zero mass case , 1979 .

[5]  C. Sturm,et al.  Higgs Pseudo-Observables, Second Riemann Sheet and All That ‡‡ , 2010, 1001.3360.

[6]  A. Denner,et al.  A Compact expression for the scalar one loop four point function , 1991 .

[7]  R. Pittau,et al.  Automated one-loop calculations: a proof of concept , 2009, 0903.4665.

[8]  R. Pittau,et al.  Recursive Numerical Calculus of One-loop Tensor Integrals , 2008 .

[9]  A. Denner,et al.  Infrared divergent scalar box integrals with applications in the electroweak standard model , 1990 .

[10]  T. Riemann,et al.  A recursive approach to the reduction of tensor Feynman integrals , 2010, 1002.0529.

[11]  G. Zanderighi,et al.  Scalar one-loop integrals for QCD , 2007, 0712.1851.

[12]  T. Hahn,et al.  Automatized One-Loop Calculations in 4 and D dimensions , 1998 .

[13]  Andreas van Hameren,et al.  OneLOop: For the evaluation of one-loop scalar functions , 2010, Comput. Phys. Commun..

[14]  Z. Bern,et al.  Dimensionally regulated one-loop integrals , 1993 .

[15]  Dao Thi Nhung,et al.  D0C: A code to calculate scalar one-loop four-point integrals with complex masses , 2009, Comput. Phys. Commun..

[16]  R. Pittau,et al.  The NLO multileg working group: summary report , 2008, 0803.0494.

[17]  T. Hahn Feynman Diagram Calculations with FeynArts, FormCalc, and LoopTools , 2010, 1006.2231.

[18]  E. Glover,et al.  A Calculational Formalism for One-Loop Integrals , 2004, hep-ph/0402152.

[19]  A. Denner,et al.  Scalar one-loop 4-point integrals , 2010, 1005.2076.

[20]  M. Campanelli,et al.  The SM and NLO Multileg Working Group: Summary report , 2010, 1003.1241.

[21]  L. Dixon,et al.  Dimensionally-regulated pentagon integrals☆ , 1993, hep-ph/9306240.

[22]  T. Binoth,et al.  Reduction formalism for dimensionally regulated one loop N point integrals , 1999, hep-ph/9911342.

[23]  C. Schubert,et al.  An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .

[24]  Predictions for all processes e + e - → fermions + γ , 1999, hep-ph/9904472.

[25]  G. Duplančić,et al.  Reduction method for dimensionally regulatedone-loop N-point Feynman integrals , 2003, hep-ph/0303184.

[26]  J. Guillet,et al.  Six-Photon Amplitudes in Scalar QED , 2007, 0711.4713.

[27]  G. Ossola,et al.  Tensorial reconstruction at the integrand level , 2010, 1008.2441.

[28]  J Schwinger,et al.  Relativistic quantum field theory. , 1966, Science.

[29]  G. Passarino Higgs Pseudo-Observables , 2010 .

[30]  J. Vermaseren,et al.  New algorithms for one-loop integrals , 1990 .

[31]  A. I. Davydychev A simple formula for reducing Feynman diagrams to scalar integrals , 1991 .

[32]  J. Campbell,et al.  Next-to-leading order corrections to $W^+$ 2 jet and $Z^+$ 2 jet production at hadron colliders , 2002, hep-ph/0202176.

[33]  C. Sturm,et al.  Two-loop threshold singularities, unstable particles and complex masses , 2008, 0809.1302.

[34]  A. Denner,et al.  Electroweak corrections to charged-current e+ e- ---> 4 fermion processes: Technical details and further results , 2005, hep-ph/0505042.

[35]  Costas G. Papadopoulos,et al.  CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes , 2007, 0711.3596.

[36]  V. Hankele,et al.  Vbfnlo: A parton level Monte Carlo for processes with electroweak bosons , 2008, Comput. Phys. Commun..

[37]  T. Riemann,et al.  Complete algebraic reduction of one-loop tensor Feynman integrals , 2010, 1009.4436.

[38]  P. Mastrolia,et al.  Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level , 2010, 1006.0710.

[39]  Gerard 't Hooft,et al.  Scalar One Loop Integrals , 1979 .

[40]  G. Passarino,et al.  Anomalous Threshold as the Pivot of Feynman Amplitudes , 2008, 0807.0698.

[41]  T. Hahn,et al.  Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2001 .

[42]  F. Boudjema,et al.  b anti-b Higgs production at the LHC: Yukawa corrections and the leading Landau singularity , 2008, 0806.1498.

[43]  D. Soper,et al.  Numerical integration of one-loop Feynman diagrams for N-photon amplitudes , 2006, hep-ph/0610028.

[44]  A. Denner,et al.  Reduction schemes for one-loop tensor integrals , 2005, hep-ph/0509141.

[45]  S. Weinzierl,et al.  Automated computation of one-loop integrals in massless theories , 2005, hep-ph/0502165.

[46]  T. Binoth,et al.  golem95: A numerical program to calculate one-loop tensor integrals with up to six external legs , 2008, Comput. Phys. Commun..