New suprathermal proton population around the Moon: Observation by SARA on Chandrayaan‐1

We report a new population of suprathermal H+ (∼1.5–3 times the solar wind energy) around the Moon observed by Solar Wind Monitor (SWIM)/Sub‐keV Atom Reflecting Analyzer (SARA) on Chandrayaan‐1. These ions have large initial velocity (>100 km s−1) and are observed on the dayside, near the terminator, and in the near‐wake region (100–200 km above the surface), when the Moon is located outside Earth's bow shock. Backtracing suggests that the source is located >500 km above the dayside lunar surface. Possible sources considered for these ions are ionization of backscattered lunar energetic neutral hydrogen atoms, ionization of lunar exospheric hydrogen, inner source pickup ions, interstellar pickup ions, ionization of neutral solar wind, and solar wind H+ reflected from Earth's bow shock. The comparison of the observed flux (density) with that expected from these sources and the velocity distribution suggests that an additional source is required to explain the population.

[1]  S. Barabash,et al.  A family for miniature, easily reconfigurable particle sensors for space plasma measurements , 2016 .

[2]  J. Halekas,et al.  Structure and composition of the distant lunar exosphere: Constraints from ARTEMIS observations of ion acceleration in time‐varying fields , 2016, Journal of geophysical research. Planets.

[3]  M. Horányi,et al.  LADEE/LDEX observations of lunar pickup ion distribution and variability , 2016 .

[4]  A. Bhardwaj,et al.  Characteristics of proton velocity distribution functions in the near-lunar wake from Chandrayaan-1/SWIM observations , 2016, 1602.06424.

[5]  A. Bhardwaj,et al.  A new view on the solar wind interaction with the Moon , 2015, Geoscience Letters.

[6]  Paul R. Mahaffy,et al.  Detections of lunar exospheric ions by the LADEE neutral mass spectrometer , 2015 .

[7]  H. Tsunakawa,et al.  Surface vector mapping of magnetic anomalies over the Moon using Kaguya and Lunar Prospector observations , 2015 .

[8]  P. Feldman,et al.  New upper limits on numerous atmospheric species in the native lunar atmosphere , 2013 .

[9]  A. Bhardwaj,et al.  Proton entry into the near‐lunar plasma wake for magnetic field aligned flow , 2013, 1602.06415.

[10]  E. Möbius,et al.  LOCAL INTERSTELLAR HYDROGEN'S DISAPPEARANCE AT 1 AU: FOUR YEARS OF IBEX IN THE RISING SOLAR CYCLE , 2013, 1306.3687.

[11]  D. Lawrence,et al.  Reflection of solar wind hydrogen from the lunar surface , 2013 .

[12]  J. Halekas,et al.  Using ARTEMIS pickup ion observations to place constraints on the lunar atmosphere , 2013 .

[13]  A. Bhardwaj,et al.  Interaction of Solar Wind with Moon: AN Overview on the Results from the SARA Experiment Aboard Chandrayaan-1 , 2012 .

[14]  A. Bhardwaj,et al.  Energetic neutral atom imaging of the lunar surface , 2012 .

[15]  William M. Farrell,et al.  New views of the lunar plasma environment , 2011 .

[16]  Chunlai Li,et al.  Detection of m/q = 2 pickup ions in the plasma environment of the Moon: The trace of exospheric H2+ , 2011 .

[17]  A. Bhardwaj,et al.  Strong influence of lunar crustal fields on the solar wind flow , 2011 .

[18]  A. Bhardwaj,et al.  Protons in the near-lunar wake observed by the Sub-keV Atom Reflection Analyzer on board Chandrayaan-1 , 2010, 1011.4448.

[19]  E. Möbius,et al.  ENERGETIC NEUTRAL ATOMS: AN ADDITIONAL SOURCE FOR HELIOSPHERIC PICKUP IONS , 2010 .

[20]  S. Sasaki,et al.  In-flight Performance and Initial Results of Plasma Energy Angle and Composition Experiment (PACE) on SELENE (Kaguya) , 2010 .

[21]  D. Mccomas,et al.  PICKUP IONS FROM ENERGETIC NEUTRAL ATOMS , 2010 .

[22]  Wei Zuo,et al.  Acceleration of scattered solar wind protons at the polar terminator of the Moon: Results from Chang'E‐1/SWIDs , 2010 .

[23]  A. Bhardwaj,et al.  Extremely high reflection of solar wind protons as neutral hydrogen atoms from regolith in space , 2009, 1012.2972.

[24]  A. Bhardwaj,et al.  Dynamics of solar wind protons reflected by the Moon , 2009, 1010.2065.

[25]  M. Gruntman,et al.  Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer (IBEX) , 2009, Science.

[26]  M. Fujimoto,et al.  Solar‐wind proton access deep into the near‐Moon wake , 2009 .

[27]  M. Fujimoto,et al.  Pairwise energy gain‐loss feature of solar wind protons in the near‐Moon wake , 2009 .

[28]  R. Lundin,et al.  Investigation of the solar wind-Moon interaction onboard Chandrayaan-1 mission with the SARA experiment , 2009 .

[29]  Kazushi Asamura,et al.  Solar wind proton reflection at the lunar surface: Low energy ion measurement by MAP‐PACE onboard SELENE (KAGUYA) , 2008 .

[30]  L. Hood,et al.  A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data , 2008 .

[31]  M. Bzowski Survival probability and energy modification of hydrogen energetic neutral atoms on their way from the termination shock to Earth orbit , 2008, 0801.2190.

[32]  U. Rohner,et al.  The lunar exosphere: The sputtering contribution , 2007 .

[33]  R. Lundin,et al.  Low energy neutral atom imaging on the Moon with the SARA instrument aboard Chandrayaan-1 mission , 2005 .

[34]  D. Mitchell,et al.  Electrons and magnetic fields in the lunar plasma wake , 2005 .

[35]  M. Gruntman,et al.  Mass transport in the heliosphere by energetic neutral atoms , 2004 .

[36]  Yoshifumi Futaana,et al.  Moon‐related nonthermal ions observed by Nozomi: Species, sources, and generation mechanisms , 2003 .

[37]  Michael R. Collier,et al.  Observations of neutral atoms from the solar wind , 2001 .

[38]  J. Geiss,et al.  Elemental composition of the inner source pickup ions , 2000 .

[39]  J. Geiss,et al.  Inner source distributions: Theoretical interpretation, implications, and evidence for inner source protons , 2000 .

[40]  S. Alan Stern,et al.  The lunar atmosphere: History, status, current problems, and context , 1999 .

[41]  Urs Mall,et al.  Direct observation of lunar pick‐up ions near the Moon , 1998 .

[42]  J. Geiss,et al.  C+ pickup ions in the heliosphere and their origin , 1995 .

[43]  M. Hilchenbach,et al.  Detection of singly ionized energetic lunar pick-up ions upstream of earth's bow shock , 1992 .

[44]  C. Bonifazi,et al.  Reflected and diffuse ions backstreaming from the Earth's bow shock 2. Origin , 1981 .

[45]  N. Sckopke,et al.  Characteristics of reflected and diffuse ions upstream from the earth's bow shock , 1981 .

[46]  C. Bonifazi,et al.  Reflected and diffuse ions backstreaming from the Earth's bow shock 1. Basic properties , 1981 .

[47]  N. Sckopke,et al.  Observations of two distinct populations of bow shock ions in the upstream solar wind , 1978 .

[48]  H. K. Hills,et al.  Bow shock protons in the lunar environment , 1975 .

[49]  G. Thomas,et al.  Neutral and ion exosphere models for lunar hydrogen and helium , 1974 .

[50]  C. Meng,et al.  30- to 100-keV protons upstream from the earth's bow shock , 1974 .

[51]  B. Sonnerup Acceleration of particles reflected at a shock front , 1969 .

[52]  J. Asbridge,et al.  Outward flow of protons from the Earth's bow shock , 1968 .

[53]  J. Mihalov,et al.  Diamagnetic Solar-Wind Cavity Discovered behind Moon , 1967, Science.