Strongly stable bases for adaptively refined multilevel spline spaces

The problem of constructing a normalized hierarchical basis for adaptively refined spline spaces is addressed. Multilevel representations are defined in terms of a hierarchy of basis functions, reflecting different levels of refinement. When the hierarchical model is constructed by considering an underlying sequence of bases {Γℓ}ℓ=0,…,N−1$\{\Gamma ^{\ell }\}_{\ell =0,\ldots ,N-1}$ with properties analogous to classical tensor-product B-splines, we can define a set of locally supported basis functions that form a partition of unity and possess the property of coefficient preservation, i.e., they preserve the coefficients of functions represented with respect to one of the bases Γℓ$\Gamma ^{\ell }$. Our construction relies on a certain truncation procedure, which eliminates the contributions of functions from finer levels in the hierarchy to coarser level ones. Consequently, the support of the original basis functions defined on coarse grids is possibly reduced according to finer levels in the hierarchy. This truncation mechanism not only decreases the overlapping of basis supports, but it also guarantees strong stability of the construction. In addition to presenting the theory for the general framework, we apply it to hierarchically refined tensor-product spline spaces, under certain reasonable assumptions on the given knot configuration.

[1]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[2]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[3]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[4]  W. Boehm,et al.  Bezier and B-Spline Techniques , 2002 .

[5]  Tom Lyche,et al.  On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.

[6]  Tom Lyche,et al.  On the p -norm condition number of the multivariate triangular Bernstein basis , 2000 .

[7]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[8]  Stefanie Hahmann,et al.  Hierarchical triangular splines , 2005, TOGS.

[9]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[10]  Hans-Peter Seidel,et al.  Multiresolution analysis over triangles, based on quadratic Hermite interpolation , 2000 .

[11]  Günther Nürnberger,et al.  Multivariate Approximation and Splines , 1997 .

[12]  Larry Schumaker,et al.  Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .

[13]  L. Schumaker,et al.  Surface Fitting and Multiresolution Methods , 1997 .

[14]  Hartmut Prautzsch The Location of the Control Points in the Case of Box Splines , 1986 .

[15]  Meng Wu,et al.  Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions , 2012, Comput. Aided Geom. Des..

[16]  C. D. Boor,et al.  Box splines , 1993 .

[17]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[18]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[19]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[20]  Hendrik Speleers,et al.  On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.

[21]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..

[22]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[23]  H. Nguyen-Xuan,et al.  Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .

[24]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[25]  Bert Jüttler,et al.  Enhancing isogeometric analysis by a finite element-based local refinement strategy , 2012 .

[26]  Hendrik Speleers,et al.  Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..