Strongly stable bases for adaptively refined multilevel spline spaces
暂无分享,去创建一个
Hendrik Speleers | Bert Jüttler | Carlotta Giannelli | H. Speleers | B. Jüttler | Carlotta Giannelli
[1] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[2] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[3] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[4] W. Boehm,et al. Bezier and B-Spline Techniques , 2002 .
[5] Tom Lyche,et al. On a class of weak Tchebycheff systems , 2005, Numerische Mathematik.
[6] Tom Lyche,et al. On the p -norm condition number of the multivariate triangular Bernstein basis , 2000 .
[7] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[8] Stefanie Hahmann,et al. Hierarchical triangular splines , 2005, TOGS.
[9] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[10] Hans-Peter Seidel,et al. Multiresolution analysis over triangles, based on quadratic Hermite interpolation , 2000 .
[11] Günther Nürnberger,et al. Multivariate Approximation and Splines , 1997 .
[12] Larry Schumaker,et al. Spline Functions: Basic Theory: Preface to the 3rd Edition , 2007 .
[13] L. Schumaker,et al. Surface Fitting and Multiresolution Methods , 1997 .
[14] Hartmut Prautzsch. The Location of the Control Points in the Case of Box Splines , 1986 .
[15] Meng Wu,et al. Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions , 2012, Comput. Aided Geom. Des..
[16] C. D. Boor,et al. Box splines , 1993 .
[17] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[18] Rida T. Farouki,et al. On the optimal stability of the Bernstein basis , 1996, Math. Comput..
[19] B. Simeon,et al. Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .
[20] Hendrik Speleers,et al. On the Local Approximation Power of Quasi-Hierarchical Powell-Sabin Splines , 2008, MMCS.
[21] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..
[22] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[23] H. Nguyen-Xuan,et al. Isogeometric analysis using polynomial splines over hierarchical T-meshes for two-dimensional elastic solids , 2011 .
[24] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[25] Bert Jüttler,et al. Enhancing isogeometric analysis by a finite element-based local refinement strategy , 2012 .
[26] Hendrik Speleers,et al. Quasi-hierarchical Powell-Sabin B-splines , 2009, Comput. Aided Geom. Des..