Life beyond 30: Probing the −20 < M UV < −17 Luminosity Function at 8 < z < 13 with the NIRCam Parallel Field of the MIRI Deep Survey

We present the ultraviolet luminosity function and an estimate of the cosmic star formation rate density at 8 < z < 13 derived from deep NIRCam observations taken in parallel with the MIRI Deep Survey of the Hubble Ultra Deep Field (HUDF), NIRCam covering the parallel field 2. Our deep (40 hr) NIRCam observations reach an F277W magnitude of 30.8 (5σ), more than 2 mag deeper than JWST public data sets already analyzed to find high-redshift galaxies. We select a sample of 44 z > 8 galaxy candidates based on their dropout nature in the F115W and/or F150W filters, a high probability for their photometric redshifts, estimated with three different codes, being at z > 8, good fits based on χ 2 calculations, and predominant solutions compared to z < 8 alternatives. We find mild evolution in the luminosity function from z ∼ 13 to z ∼ 8, i.e., only a small increase in the average number density of ∼0.2 dex, while the faint-end slope and absolute magnitude of the knee remain approximately constant, with values α = − 2.2 ± 0.1, and M * = − 20.8 ± 0.2 mag. Comparing our results with the predictions of state-of-the-art galaxy evolution models, we find two main results: (1) a slower increase with time in the cosmic star formation rate density compared to a steeper rise predicted by models; (2) nearly a factor of 10 higher star formation activity concentrated in scales around 2 kpc in galaxies with stellar masses ∼108 M ⊙ during the first 350 Myr of the universe, z ∼ 12, with models matching better the luminosity density observational estimations ∼150 Myr later, by z ∼ 9.

[1]  L. Y. Aaron Yung,et al.  CEERS Spectroscopic Confirmation of NIRCam-selected z ≳ 8 Galaxy Candidates with JWST/NIRSpec: Initial Characterization of Their Properties , 2023, The Astrophysical Journal Letters.

[2]  Dawn,et al.  Broad Emission Lines in Optical Spectra of Hot, Dust-obscured Galaxies Can Contribute Significantly to JWST/NIRCam Photometry , 2022, The Astrophysical Journal Letters.

[3]  R. Bouwens,et al.  UV luminosity density results at z > 8 from the first JWST/NIRCam Fields: Limitations of early data sets and the need for spectroscopy , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  M. Meneghetti,et al.  Early Results from GLASS-JWST. XIX. A High Density of Bright Galaxies at z ≈ 10 in the A2744 Region , 2022, The Astrophysical Journal Letters.

[5]  H. Rix,et al.  Spectroscopic confirmation of four metal-poor galaxies at z = 10.3–13.2 , 2022, Nature Astronomy.

[6]  Copenhagen,et al.  Identification and properties of intense star-forming galaxies at redshifts z > 10 , 2022, Nature Astronomy.

[7]  L. Y. Aaron Yung,et al.  CEERS Key Paper. I. An Early Look into the First 500 Myr of Galaxy Formation with JWST , 2022, The Astrophysical Journal Letters.

[8]  M. Viel,et al.  JWST high-redshift galaxy constraints on warm and cold dark matter models , 2022, Astronomy &amp; Astrophysics.

[9]  R. Bouwens,et al.  Evolution of the UV LF from z ∼ 15 to z ∼ 8 Using New JWST NIRCam Medium-Band Observations over the HUDF/XDF , 2022, Monthly Notices of the Royal Astronomical Society.

[10]  L. Y. Aaron Yung,et al.  CEERS Key Paper. IV. A Triality in the Nature of HST-dark Galaxies , 2022, The Astrophysical Journal Letters.

[11]  A. Fontana,et al.  The nature of an ultra-faint galaxy in the cosmic dark ages seen with JWST , 2022, Nature.

[12]  M. Nonino,et al.  A magnified compact galaxy at redshift 9.51 with strong nebular emission lines , 2022, Science.

[13]  P. Kroupa,et al.  Has JWST Already Falsified Dark-matter-driven Galaxy Formation? , 2022, The Astrophysical Journal Letters.

[14]  L. Ho,et al.  A Lower Bound of Star Formation Activity in Ultra-high-redshift Galaxies Detected with JWST: Implications for Stellar Populations and Radiation Sources , 2022, Astrophysical Journal Letters.

[15]  A. Grazian,et al.  JWST unveils heavily obscured (active and passive) sources up to z~13 , 2022, 2208.02825.

[16]  L. Y. Aaron Yung,et al.  Dusty Starbursts Masquerading as Ultra-high Redshift Galaxies in JWST CEERS Observations , 2022, The Astrophysical Journal Letters.

[17]  M. Oguri,et al.  A Comprehensive Study of Galaxies at z ∼ 9–16 Found in the Early JWST Data: Ultraviolet Luminosity Functions and Cosmic Star Formation History at the Pre-reionization Epoch , 2022, The Astrophysical Journal Supplement Series.

[18]  S. Charlot,et al.  On the ages of bright galaxies ∼500 Myr after the Big Bang: insights into star formation activity at z ≳ 15 with JWST , 2022, Monthly Notices of the Royal Astronomical Society.

[19]  L. Y. Aaron Yung,et al.  Expectations of the Size Evolution of Massive Galaxies at 3 ≤ z ≤ 6 from the TNG50 Simulation: The CEERS/JWST View , 2022, The Astrophysical Journal.

[20]  J. Dunlop,et al.  The evolution of the galaxy UV luminosity function at redshifts z ≃ 8 – 15 from deep JWST and ground-based near-infrared imaging , 2022, Monthly Notices of the Royal Astronomical Society.

[21]  L. Y. Aaron Yung,et al.  A Long Time Ago in a Galaxy Far, Far Away: A Candidate z ∼ 12 Galaxy in Early JWST CEERS Imaging , 2022, The Astrophysical Journal Letters.

[22]  O. Fèvre,et al.  COSMOS2020: UV-selected galaxies at z>7.5 , 2022, Astronomy &amp; Astrophysics.

[23]  A. Zitrin,et al.  First Batch of Candidate Galaxies at Redshifts 11 to 20 Revealed by the James Webb Space Telescope Early Release Observations , 2022, 2207.11558.

[24]  C. Conselice,et al.  Discovery and properties of ultra-high redshift galaxies (9 < z < 12) in the JWST ERO SMACS 0723 Field , 2022, Monthly Notices of the Royal Astronomical Society.

[25]  R. Bouwens,et al.  Two Remarkably Luminous Galaxy Candidates at z ≈ 10–12 Revealed by JWST , 2022, The Astrophysical Journal Letters.

[26]  J. Dunlop,et al.  A first look at the SMACS0723 JWST ERO: spectroscopic redshifts, stellar masses and star-formation histories , 2022, 2207.08778.

[27]  B. Mobasher,et al.  Implications of a Temperature-dependent Initial Mass Function. III. Mass Growth and Quiescence , 2022, The Astrophysical Journal.

[28]  B. Mobasher,et al.  Implications of a Temperature-dependent Initial Mass Function. II. An Updated View of the Star-forming Main Sequence , 2022, The Astrophysical Journal.

[29]  G. Caminha,et al.  The Galaxy Starburst/Main-sequence Bimodality over Five Decades in Stellar Mass at z ≈ 3–6.5 , 2021, The Astrophysical Journal.

[30]  B. Robertson Galaxy Formation and Reionization: Key Unknowns and Expected Breakthroughs by the James Webb Space Telescope , 2021, Annual Review of Astronomy and Astrophysics.

[31]  V. Springel,et al.  Introducing the THESAN project: radiation-magnetohydrodynamic simulations of the epoch of reionization , 2021, 2110.00584.

[32]  A. Loeb,et al.  Implications for the Hubble tension from the ages of the oldest astrophysical objects , 2021, Journal of High Energy Astrophysics.

[33]  L. Ho,et al.  Evidence for GN-z11 as a luminous galaxy at redshift 10.957 , 2020, Nature Astronomy.

[34]  Benjamin D. Johnson,et al.  Stellar Population Inference with Prospector , 2020, The Astrophysical Journal Supplement Series.

[35]  S. Furlanetto,et al.  A flexible analytic model of cosmic variance in the first billion years , 2020, Monthly Notices of the Royal Astronomical Society.

[36]  P. Thomas,et al.  First Light And Reionisation Epoch Simulations (FLARES) II: The Photometric Properties of High-Redshift Galaxies , 2020, Monthly Notices of the Royal Astronomical Society.

[37]  Andrew P. Hearin,et al.  The Universe at z > 10: predictions for JWST from the universemachine DR1 , 2020, 2007.04988.

[38]  L. Pentericci,et al.  Astraeus – II. Quantifying the impact of cosmic variance during the Epoch of Reionization , 2020, 2004.11096.

[39]  P. Thomas,et al.  First Light And Reionization Epoch Simulations (FLARES) – I. Environmental dependence of high-redshift galaxy evolution , 2020, Monthly Notices of the Royal Astronomical Society.

[40]  O. Ilbert,et al.  The synthetic Emission Line COSMOS catalogue: Hα and [O ii] galaxy luminosity functions and counts at 0.3 < z < 2.5 , 2020, Monthly Notices of the Royal Astronomical Society.

[41]  S. Finkelstein,et al.  Probing the Bright End of the Rest-frame Ultraviolet Luminosity Function at z = 8–10 with Hubble Pure-parallel Imaging , 2020, The Astrophysical Journal.

[42]  L. Y. Aaron Yung,et al.  Semi-analytic forecasts for JWST – IV. Implications for cosmic reionization and LyC escape fraction , 2020, Monthly Notices of the Royal Astronomical Society.

[43]  J. Dunlop,et al.  A lack of evolution in the very bright end of the galaxy luminosity function from z ≃ 8 to 10 , 2019, Monthly Notices of the Royal Astronomical Society.

[44]  R. Bouwens,et al.  The Hubble Legacy Field GOODS-S Photometric Catalog , 2019, The Astrophysical Journal Supplement Series.

[45]  R. Somerville,et al.  Cosmic variance of z > 7 galaxies: prediction from bluetides , 2019, Monthly Notices of the Royal Astronomical Society.

[46]  J. Speagle dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences , 2019, Monthly Notices of the Royal Astronomical Society.

[47]  V. Springel,et al.  First results from the TNG50 simulation: the evolution of stellar and gaseous discs across cosmic time , 2019, Monthly Notices of the Royal Astronomical Society.

[48]  V. Springel,et al.  First results from the TNG50 simulation: galactic outflows driven by supernovae and black hole feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[49]  D. Narayanan,et al.  simba: Cosmological simulations with black hole growth and feedback , 2019, Monthly Notices of the Royal Astronomical Society.

[50]  A. Casey,et al.  An Ultra Metal-poor Star Near the Hydrogen-burning Limit , 2018, The Astrophysical Journal.

[51]  C. Conselice,et al.  Evolution of the galaxy stellar mass functions and UV luminosity functions at z = 6−9 in the Hubble Frontier Fields , 2018, Monthly Notices of the Royal Astronomical Society.

[52]  L. Y. Aaron Yung,et al.  Semi-analytic forecasts forJWST– I. UV luminosity functions atz = 4–10 , 2018, Monthly Notices of the Royal Astronomical Society.

[53]  Chris J. Willott,et al.  The JWST Extragalactic Mock Catalog: Modeling Galaxy Populations from the UV through the Near-IR over 13 Billion Years of Cosmic History , 2018, 1802.05272.

[54]  A. Fontana,et al.  On the Faint End of the Galaxy Luminosity Function in the Epoch of Reionization: Updated Constraints from the HST Frontier Fields , 2017, The Astrophysical Journal.

[55]  R. Bouwens,et al.  The Dearth of z ∼ 10 Galaxies in All HST Legacy Fields—The Rapid Evolution of the Galaxy Population in the First 500 Myr , 2017, 1710.11131.

[56]  Annalisa Pillepich,et al.  First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies , 2017, 1707.03406.

[57]  V. Springel,et al.  First results from the IllustrisTNG simulations: radio haloes and magnetic fields , 2017, Monthly Notices of the Royal Astronomical Society.

[58]  Cca,et al.  First results from the IllustrisTNG simulations: matter and galaxy clustering , 2017, 1707.03397.

[59]  G. Kauffmann,et al.  First results from the IllustrisTNG simulations: the galaxy colour bimodality , 2017, 1707.03395.

[60]  E. Ramirez-Ruiz,et al.  First results from the IllustrisTNG simulations: a tale of two elements - chemical evolution of magnesium and europium , 2017, 1707.03401.

[61]  V. Bromm,et al.  Warm dark matter constraints from high-z direct collapse black holes using the JWST , 2017, 1705.00632.

[62]  Edward Higson,et al.  Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation , 2017, Statistics and Computing.

[63]  M. Oguri,et al.  Full-data Results of Hubble Frontier Fields: UV Luminosity Functions at z ∼ 6–10 and a Consistent Picture of Cosmic Reionization , 2017, 1702.04867.

[64]  Observatoire de la Côte d'Azur,et al.  Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties , 2016, 1609.04172.

[65]  O. Fèvre,et al.  THE COSMOS2015 CATALOG: EXPLORING THE 1 < z < 6 UNIVERSE WITH HALF A MILLION GALAXIES , 2016, 1604.02350.

[66]  J. Dunlop,et al.  The z = 9-10 galaxy population in the Hubble Frontier Fields and CLASH surveys: the z = 9 luminosity function and further evidence for a smooth decline in ultraviolet luminosity density at z≥ 8 , 2016, 1602.05199.

[67]  M. Cappellari Structure and Kinematics of Early-Type Galaxies from Integral Field Spectroscopy , 2016, 1602.04267.

[68]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[69]  K. Alatalo,et al.  The ATLAS3D Project – XXX. Star formation histories and stellar population scaling relations of early-type galaxies , 2015, 1501.03723.

[70]  S. White,et al.  The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations , 2015, 1501.01311.

[71]  L. Bigot,et al.  Benchmark stars for Gaia Fundamental properties of the Population II star HD 140283 from interferometric, spectroscopic, and photometric data , 2014, 1410.4780.

[72]  O. Fèvre,et al.  Evolution of the specific star formation rate function at z< 1.4 Dissecting the mass-SFR plane in COSMOS and GOODS , 2014, 1410.4875.

[73]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[74]  V. Springel,et al.  Introducing the Illustris Project: simulating the coevolution of dark and visible matter in the Universe , 2014, 1405.2921.

[75]  Bruno Milliard,et al.  Encoding of the infrared excess in the NUVrK color diagram for star-forming galaxies , 2013, 1309.0008.

[76]  C. Frenk,et al.  The properties of warm dark matter haloes , 2013, 1308.1399.

[77]  J. Dunlop,et al.  A PUBLIC Ks-SELECTED CATALOG IN THE COSMOS/UltraVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS, , 2013, 1303.4410.

[78]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[79]  P. Kroupa,et al.  Evidence for top-heavy stellar initial mass functions with increasing density and decreasing metallicity , 2012, 1202.4755.

[80]  S. Ravindranath,et al.  CANDELS: THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY—THE HUBBLE SPACE TELESCOPE OBSERVATIONS, IMAGING DATA PRODUCTS, AND MOSAICS , 2011, 1105.3753.

[81]  J. Gunn,et al.  FSPS: Flexible Stellar Population Synthesis , 2010 .

[82]  Cambridge,et al.  A Universal Stellar Initial Mass Function? A critical look at variations in extreme environments , 2010, 1001.2965.

[83]  Paolo Coppi,et al.  EAZY: A Fast, Public Photometric Redshift Code , 2008, 0807.1533.

[84]  M. Stiavelli,et al.  Cosmic Variance and Its Effect on the Luminosity Function Determination in Deep High-z Surveys , 2007, 0712.0398.

[85]  G. Rieke,et al.  The Stellar Mass Assembly of Galaxies from z = 0 to z = 4: Analysis of a Sample Selected in the Rest-Frame Near-Infrared with Spitzer , 2007, 0709.1354.

[86]  P. Hall,et al.  The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies , 2006, astro-ph/0612612.

[87]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[88]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[89]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[90]  P. P. van der Werf,et al.  Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts , 2002, astro-ph/0212236.

[91]  C. Leitherer,et al.  Global Far-Ultraviolet (912-1800 Å) Properties of Star-forming Galaxies , 2002 .

[92]  T. Beers,et al.  The Chemical Composition and Age of the Metal-poor Halo Star BD +17°3248 , 2002, astro-ph/0202429.

[93]  L. Moscardini,et al.  Measuring the Redshift Evolution of Clustering: the Hubble Deep Field South , 2001, astro-ph/0109453.

[94]  A. Kinney,et al.  The Dust Content and Opacity of Actively Star-forming Galaxies , 1999, astro-ph/9911459.

[95]  Richard S. Ellis,et al.  Analysis of a complete galaxy redshift survey – II. The field-galaxy luminosity function , 1988 .

[96]  J. B. Oke,et al.  Secondary standard stars for absolute spectrophotometry , 1983 .

[97]  R. Kron Photometry of a complete sample of faint galaxies. , 1980 .

[98]  P. Schechter An analytic expression for the luminosity function for galaxies , 1976 .

[99]  E. D. Friel,et al.  The Old Open Clusters of the Milky Way , 1995 .