Symmetric–Antisymmetric Orthonormal Multiwavelets and Related Scalar Wavelets☆☆☆

Abstract For compactly supported symmetric–antisymmetric orthonormal multiwavelet systems with multiplicity 2, we first show that any length-2Nmultiwavelet system can be constructed from a length-(2N+1) multiwavelet system and vice versa. Then we present two explicit formulations for the construction of multiwavelet functions directly from their associated multiscaling functions. This is followed by the relationship between these multiscaling functions and the scaling functions of related orthonormal scalar wavelets. Finally, we present two methods for constructing families of symmetric–antisymmetric orthonormal multiwavelet systems via the construction of the related scalar wavelets.

[1]  Xiang-Gen Xia,et al.  Design of prefilters for discrete multiwavelet transforms , 1996, IEEE Trans. Signal Process..

[2]  Y. Meyer,et al.  Wavelets and Filter Banks , 1991 .

[3]  Qingtang Jiang,et al.  Orthogonal multiwavelets with optimum time-frequency resolution , 1998, IEEE Trans. Signal Process..

[4]  Peter N. Heller,et al.  The application of multiwavelet filterbanks to image processing , 1999, IEEE Trans. Image Process..

[5]  Zuowei Shen,et al.  An algorithm for matrix extension and wavelet construction , 1996, Math. Comput..

[6]  Gilbert Strang,et al.  Short wavelets and matrix dilation equations , 1995, IEEE Trans. Signal Process..

[7]  Zuowei Shen Refinable function vectors , 1998 .

[8]  Qingtang Jiang,et al.  On Existence and Weak Stability of Matrix Refinable Functions , 1999 .

[9]  Qingtang Jiang On the regularity of matrix refinable functions , 1998 .

[10]  G. Plonka Approximation order provided by refinable function vectors , 1997 .

[11]  I. Daubechies,et al.  Regularity of refinable function vectors , 1997 .

[12]  Charles A. Micchelli,et al.  Regularity of multiwavelets , 1997, Adv. Comput. Math..

[13]  C. Micchelli,et al.  Biorthogonal Wavelet Expansions , 1997 .

[14]  V. Strela,et al.  THE APPLICATION OF MULTIWAVELET FILTER BANKS TO IMAGE PROCESSING ∗ , 1995 .

[15]  D. Hardin,et al.  Fractal Functions and Wavelet Expansions Based on Several Scaling Functions , 1994 .

[16]  C. Chui,et al.  A study of orthonormal multi-wavelets , 1996 .

[17]  Robert Bregovic,et al.  Multirate Systems and Filter Banks , 2002 .

[18]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[19]  G. Strang,et al.  Approximation by translates of refinable functions , 1996 .

[20]  S. L. Lee,et al.  Wavelets in wandering subspaces , 1993 .

[21]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[22]  L. Villemoes Energy moments in time and frequency for two-scale difference equation solutions and wavelets , 1992 .

[23]  George C. Donovan,et al.  Construction of Orthogonal Wavelets Using Fractal Interpolation Functions , 1996 .

[24]  S. L. Lee,et al.  WAVELETS OF MULTIPLICITY r , 1994 .