Robust Quantile Analysis for Accelerated Life Test Data
暂无分享,去创建一个
[1] Loon Ching Tang,et al. Planning accelerated life tests for censored two‐parameter exponential distributions , 1999 .
[2] Hui Li,et al. Power-Transformed Linear Quantile Regression With Censored Data , 2008 .
[3] R. Koenker. Quantile Regression: Name Index , 2005 .
[4] Harry Haupt,et al. Nonlinear quantile regression under dependence and heterogeneity , 2003 .
[5] Yao Zhang,et al. Bayesian Methods for Planning Accelerated Life Tests , 2006, Technometrics.
[6] Vilijandas Bagdonavičius,et al. Semiparametric Estimation in Accelerated Life Testing , 2000 .
[7] Zhongyi Zhu,et al. An informative subset-based estimator for censored quantile regression , 2012 .
[8] Xuming He,et al. Conditional growth charts , 2006 .
[9] Gordon Johnston,et al. Statistical Models and Methods for Lifetime Data , 2003, Technometrics.
[10] Seong-Ju Kim,et al. The metrically trimmed mean as a robust estimator of location , 1992 .
[11] Paula Kanarek,et al. Volume 10: How to Plan an Accelerated Life Test—Some Practical Guidelines , 1987 .
[12] D. Ruppert,et al. Trimmed Least Squares Estimation in the Linear Model , 1980 .
[13] Richard L. Schmoyer,et al. Nonparametric analyses for two-level single-stress accelerated life tests , 1991 .
[14] R. Koenker,et al. Regression Quantiles , 2007 .
[15] William Q. Meeker,et al. A Review of Accelerated Test Models , 2006, 0708.0369.
[16] R. Koenker. Quantile Regression: Fundamentals of Quantile Regression , 2005 .
[17] Nan Chen,et al. Simulation-based estimation of cycle time using quantile regression , 2010 .
[18] O. I. Tyoskin,et al. Nonparametric model for step-stress accelerated life testing , 1996, IEEE Trans. Reliab..
[19] Stephen Portnoy,et al. Censored Regression Quantiles , 2003 .
[20] Francis G. Pascual,et al. Lognormal and Weibull accelerated life test plans under distribution misspecification , 2005, IEEE Transactions on Reliability.
[21] W. Marsden. I and J , 2012 .
[22] Yongxiang Zhao,et al. An approach for determining an appropriate assumed distribution of fatigue life under limited data , 2000, Reliab. Eng. Syst. Saf..
[23] J. Bert Keats,et al. Statistical Methods for Reliability Data , 1999 .
[24] J. Powell,et al. Least absolute deviations estimation for the censored regression model , 1984 .
[25] B. Cade,et al. A gentle introduction to quantile regression for ecologists , 2003 .
[26] R. Koenker,et al. Robust Tests for Heteroscedasticity Based on Regression Quantiles , 1982 .
[27] Francis G. Pascual,et al. Accelerated Life Test Plans Robust to Misspecification of the Stress—Life Relationship , 2006, Technometrics.
[28] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[29] William Q. Meeker,et al. Optimum Accelerated Life Tests Wth a Nonconstant Scale Parameter , 1994 .
[30] Rong Pan,et al. A GLM approach to step-stress accelerated life testing with interval censoring , 2012 .
[31] Wayne Nelson,et al. Analysis of Accelerated Life Test Data-Least Squares Methods for the Inverse Power Law Model , 1975, IEEE Transactions on Reliability.
[32] Xiao Liu,et al. Planning of Accelerated Life Tests With Dependent Failure Modes Based on a Gamma Frailty Model , 2012, Technometrics.
[33] Guangbin Yang,et al. Accelerated Life Test Plans for Predicting Warranty Cost , 2010, IEEE Transactions on Reliability.
[34] Xiaohong Chen,et al. Estimation of Semiparametric Models When the Criterion Function is Not Smooth , 2002 .